Skip to main content

High-Temperatur-High Pressure Stress-Strain Testing of Materials in CO2-Containing Saline Solutions

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition
  • 5515 Accesses

Abstract

In-situ stress-strain testing under corrosive environment, such as corrosive gasses (e.g. CO2) and highly saline water, is a challenge in testing corrosion fatigue of materials, e.g. for geothermal application or CCS (carbon capture and storage). The first corrosion chamber system was designed for performance at ambient pressure up to 100 °C. The second allows for corrosion fatigue testing at high pressure up to 200 bar and 400 °C. The highly flexible corrosion chambers allow for fast changing and easy alignment of test samples, visual monitoring, CAD-camera monitoring electrochemical measurements, O2-partial pressure or gas partial pressure measurement. Novelty is the fixing of the corrosion chamber directly onto the specimen, that guarantees best fitting and enables the test system to be modified easily suiting a variety of fatigue test machines. All parts of the test system are conforming to the technical rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.B. Giese et al: Geochemie der Formationsfluide der Bohrung E Groß Schönebeck 3/90, STR02/14, Geothermie Report 02–1 (2001) 145 – 169

    Google Scholar 

  2. J.P. Thomas and R.P. Wei, Corrosion fatigue crack growth of steels in aqueous solutions I: Experimental results and modeling the effects of frequency and temperature, Material Science and Engineering, A159 (1992) 205–221

    Google Scholar 

  3. L.J. Mu, W.Z. Zhao, Investigation on carbon dioxide corrosion behavior of HP13Cr110 stainless steel in simulated stratum water, Corrosion Science 52 (2010) 82–89

    Article  Google Scholar 

  4. Ya.B. Unigovski, G. Lothongkum, E.M Gutman, D. Alush, R. Cohen, Low-cycle fatigue behaviour of 316L-type stainless stell in chloride solutions, Corrosion Science 51 (2009) 3014–3120

    Article  Google Scholar 

  5. C.M. Holtam, D.P. Baxter, I.A. Ashcroft, R.C. Thomsen, Effect of crack depth on fatigue crack growth rates for a C-Mn pipeline steel in a sour environment, International Journal of Fatigue 32 (2010) 288–296

    Article  Google Scholar 

  6. I. Thorbjörnsson, Corrosion fatigue testing of eight different steels in an Icelandic geothermal environment, Materials and Design Vol.16 No. 2 (1995) 97–102

    Article  Google Scholar 

  7. E. Roeder, H.-J. Bassler, M. Huber und J. Vollmar, Schwingungsrisskorrosionsverhalten des austenitischen Stahles X6CrNiMoTi 17 12 2 in 3%iger NaCl-Lösung unter Umlaufbiegebelastung, Werkstoffe und Korrosion 43 (1992) 426–431

    Article  Google Scholar 

  8. A. Pfennig, R. Wiegand, M. Wolf, C.-P. Bork, Corrosion and corrosion fatigue of AISI 420C (X46Cr13) at 60 °C in CO2-saturated artificial geothermal brine, Corrosion Science 68 (2013) 134–143

    Article  Google Scholar 

  9. R. Ebara, Corrosion fatigue crack initiation behaviour of stainless steels, Procedia Engineering 2 (2010) 1297–1306

    Article  Google Scholar 

  10. Pfennig, A., Wolf, M., Bork C.-P., Design of a high pressure system for in-situ tests on the corrosion fatigue of metallic materials, Paper No. 3775, Corrosion — Journal of Science and Engineering, NACE Corrosion 2014 Conference and Expo, Henry B. Gonzalez Convention Center, San Antonio, Texas, USA, March 9th – 13th, 2014

    Google Scholar 

  11. K. Rohloff, A. Kather, “GEOTHERMISCHE STROMERZEUGUNG,” Bundesministerium für Umwelt Naturschutz und Reaktorsicherheit (BMU), http://secure.bmu.de /fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/broschuere_geothermie_strom_bf.pdf (March 4, 2013)

    Google Scholar 

  12. European Union, “Druck- und Gasgeräte,” http://ec.europa.eu /enterprise/sectors/pressure-and-gas/documents/ped/guidelines/index_de.htm (Jan. 9, 2013)

    Google Scholar 

  13. Verband der Technischen Überwachungs-Vereine e. V., AD 2000 Regelwerk, 1ed. (Berlin, Carl Heymaanns Verlag KG, 2004)

    Google Scholar 

  14. W. Wagner, Festigkeitsberechnung im Apparate- und Rohrleitungsbau. 7nd ed. (Würzburg, Vogel Fachbuch, 2007), p, 15, 33, 178–181

    Google Scholar 

  15. [15] Richtlinie 97/23/EG des Europäischen Parlaments und des Rates (29.Mai. 1997), “Angleichung der Rechtsvorschriften der Mitgliedstaaten über Druckgeräte“ (European Union)

    Google Scholar 

  16. Arbeitsgemeinschaft Druckbehälter. Berechnung von Druckbehältern. (Berlin, Beuth Verlag, 2008). S. B0-B9

    Google Scholar 

  17. [17] DIN 50905 Teil 1: “Korrosionsuntersuchungen”, Januar 1997, Kapitel 6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Pfennig, A., Wolf, M. (2015). High-Temperatur-High Pressure Stress-Strain Testing of Materials in CO2-Containing Saline Solutions. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_123

Download citation

Publish with us

Policies and ethics