Skip to main content

Damage Behaviors at Twin and Grain Boundary in Alloy 690 Material in Very High Cycle Fatigue Regime

  • Conference paper
TMS 2015 144th Annual Meeting & Exhibition
  • 5529 Accesses

Abstract

Recent results show that fatigue crack initiation in very high cycle fatigue regime can occur at a non-defect origin in the matrix. The mechanism is not well understood. This paper provides a study on the influence of cyclic loading on the damage behavior at grain and twin boundaries in Alloy 690 material. The results show that the strains in the fatigue-tested specimen were highly localized, which were mainly caused by the dislocation accumulation in the grains with high Schmid factors during each small cyclic loading. This has led to the formation of local fine grain area consisting of numbers of new twins. The study also shows that the impingement between slip bands and grain or twin boundary is one of the main fatigue damage mechanisms. The results in this paper indicate that the role of a twin or grain boundary to block dislocation slip transmission depends on crystal orientation, Schmid factor and boundary orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. A. Meyers, Acta Metallurgical, 26 (1978), p. 951.

    Article  Google Scholar 

  2. J. W. Christina, S. Mahajan, Prog. Mater. Sci. 39 (1995), p. 1.

    Article  Google Scholar 

  3. [3] http://en.wikipedia.org/wiki/Crystal_twinning

    Google Scholar 

  4. K. Lu, L. Lu and S. Suresh, Science 324 (2009), p. 349.

    Article  Google Scholar 

  5. N. Thompson, N. Wadsworth, N. Louat, Philos. Mag. 1 (1956), p. 113.

    Article  Google Scholar 

  6. Z. Wang, H. Margolin, Metall. Trans. 16A (1985), p. 873.

    Article  Google Scholar 

  7. A. Heniz, P. Neumann, Acta Metall. Mater. 38 (1990), p. 1933.

    Article  Google Scholar 

  8. M.D. Sangid, T. Ezaz, H. Sehitoglu, I.M. Robertson, Acta Mater. 59 (2011), p. 283.

    Article  Google Scholar 

  9. D. Michael, H.J. Sangid, H. Sehitoglu, Acta Mater. 59 (2011), p. 328.

    Article  Google Scholar 

  10. L. L. Li, Z. J. Zhang, O. Zhang and Z. F. Zhang, Scripta Mater, 65 (2011), p. 505.

    Article  Google Scholar 

  11. S. E. Stanzl-Tschegg and B. Schönbauer, Inter. J. of Fatigue 32 (2010), p. 886.

    Article  Google Scholar 

  12. H Knobbe, P Köster, U Krupp, H-J Christ1, C-P Fritzen, Journal of Physics: Conference Series 240 (2010) 012–061.

    Google Scholar 

  13. C. Wang, D. Wagner and C. Bathias, Proc. of ICF 13, (2013).

    Google Scholar 

  14. L. Kunz, P. Lukas and M. Svoboda, Mater. Sci. and Eng. A 424 (2006), p. 97.

    Article  Google Scholar 

  15. A. Weidner, D. Amberger, F. Pyczak, B. Schönbauer, S. Stanzl-Tschegg, H. Mughrabi, International Journal of Fatigue 32 (2010), p. 872.

    Article  Google Scholar 

  16. G. Chai, N. Zhou, S. Ciurea, M. Andersson, and R. Lin Peng, Scripta Materialia 66 (2012), p. 769.

    Article  Google Scholar 

  17. Q. Yu, J. Zhang, and Y. Jiang, Philosophical Magazine Letters, vol. 91(2011), p. 757.

    Article  Google Scholar 

  18. B. M. Morrow, R. J. McCabe, E. K. Cerreta, C. N. Tomé, Metall. and Mater. Transactions A, 574 (2013), p. 157.

    Google Scholar 

  19. U. Essmann, U. Gösele, H. Mughrabi, Philos. Mag. 44 (1981), p. 405.

    Article  Google Scholar 

  20. Y.H. Kim, C. Laird, Acta Metall. 26 (1976), p. 789.

    Article  Google Scholar 

  21. G Chai, Inter. J. of Fatigue, 28 (2006), p. 1533.

    Article  Google Scholar 

  22. R. Lillbacka, G. Chai, M. Ekh, P. Liu, E. Johnson, K. Runesson, Acta Materialia 55 (2007), p. 5359.

    Article  Google Scholar 

  23. U. Krupp, H. Knobbe, H-J. Christ, P. Köster, C-P. Fritzen, Inter. J. of Fatigue 32 (2010), p. 914.

    Article  Google Scholar 

  24. P. Zhang, Z.J. Zhang, L.L. Li and Z.F. Zhang, Scripta Materialia 66 (2012), p. 854.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Chai, G. (2015). Damage Behaviors at Twin and Grain Boundary in Alloy 690 Material in Very High Cycle Fatigue Regime. In: TMS 2015 144th Annual Meeting & Exhibition. Springer, Cham. https://doi.org/10.1007/978-3-319-48127-2_120

Download citation

Publish with us

Policies and ethics