Skip to main content

Atomic-Level Mechanisms of Magnesium Oxidation

  • Chapter
Magnesium Technology 2016
  • 2306 Accesses

Abstract

Magnesium has been recently becoming an increasingly popular material for various applications. However, excessive chemical reactivity, and oxidation rate in particular, is a major obstruction on the way of Mg to become widely adopted. A significant problem causing the lack of Mg reactivity control is insufficient understanding of mechanisms involved in the oxidation of magnesium surface.

Herewith we present the investigation of atomic-level mechanisms of oxidation initiation and propagation in pure Mg. Namely, X-ray photoelectron spectroscopy at synchrotron Elettra was used as a surface sensitive direct method to determine the valence of Mg and O and the valence band states at the early stage of oxide formation over a principal, most densely packed, crystallographic plane (0001) in pure Mg. The mechanisms of oxygen adsorption on magnesium free surface followed by oxidation (i.e. initiation and kinetics of MgO formation) are clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pollock TM. Science 2010;328:986.

    Article  Google Scholar 

  2. Agnew SR, Nie IF. Scripta Materialia 2010;63:671.

    Article  Google Scholar 

  3. Witte F. Acta Biomaterialia 2010;6:1680.

    Article  Google Scholar 

  4. McCall CR, Hill MA, Lillard RS. Corrosion Engineering, Science and Technology 2005;40:337.

    Google Scholar 

  5. Orlov D, Ralston KD, Birbilis N, Estrin Y. Acta Mater. 2011;59:6176.

    Article  Google Scholar 

  6. Atrens A, Song G-L, Liu M, Shi Z, Cao F, Dargusch MS. Advanced Engineering Materials 2015;17:400.

    Article  Google Scholar 

  7. Hüfner S. Photoelectron Spectroscopy Principles and Applications: Springer-Verlag Berlin Heidelberg, 2003.

    Book  Google Scholar 

  8. Sprunger PT, Pohl K, Davis HL, Plummer EW. Surface Science 1993;297:L48.

    Article  Google Scholar 

  9. Cho J-H, Ismail, Zhang Z, Plummer EW. Physical Review B 1999;59:1677.

    Article  Google Scholar 

  10. Kammerer R, Barth J, Gerken F, Kunz C, Flodstrøm SA, Johansson LI. Physical Review B 1982;26:3491.

    Article  Google Scholar 

  11. Cho J-H, Kim KS, Lee S-H, Kang M-H, Zhang Z. Physical Review B 2000;61:9975.

    Article  Google Scholar 

  12. Thiry PA, Ghijsen J, Sporken R, Pireaux JJ, Johnson RL, Caudano R. Physical Review B 1989;39:3620.

    Article  Google Scholar 

  13. Hellman A. Physical Review B 2005;72:201403.

    Article  Google Scholar 

  14. Schröder E, Fasel R, Kiejna A. Physical Review B 2004;69:115431.

    Google Scholar 

  15. Schröder E, Fasel R, Kiejna A. Physical Review B 2004;69:193405

    Google Scholar 

  16. Carley AF, Davies PR, Jones RV, Harikumar KR, Roberts MW. Chemical Communications 2002:2020.

    Google Scholar 

  17. Driver SM, Lüdecke J, Jackson GJ, Woodruff DP. J. Electron Spectrosc. Rel. Phenom. 1999;98–99:235.

    Article  Google Scholar 

  18. Cheng S-T, Todorova M, Freysoldt C, Neugebauer J. Physical Review Letters 2014;113:136102.

    Article  Google Scholar 

  19. Reuter K. Nanometer and sub-nanometer thin oxide films at surfaces of late transition metals. In: Heiz U, Hakkinen H, Landman U, editors. Nanocatalysis: Principles, Methods, Case Studies. 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Gardonio, S., Fanetti, M., Valant, M., Orlov, D. (2016). Atomic-Level Mechanisms of Magnesium Oxidation. In: Singh, A., Solanki, K., Manuel, M.V., Neelameggham, N.R. (eds) Magnesium Technology 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48114-2_16

Download citation

Publish with us

Policies and ethics