Skip to main content

Atomic-Level Mechanisms of Magnesium Oxidation

  • Chapter
  • 2074 Accesses

Abstract

Magnesium has been recently becoming an increasingly popular material for various applications. However, excessive chemical reactivity, and oxidation rate in particular, is a major obstruction on the way of Mg to become widely adopted. A significant problem causing the lack of Mg reactivity control is insufficient understanding of mechanisms involved in the oxidation of magnesium surface.

Herewith we present the investigation of atomic-level mechanisms of oxidation initiation and propagation in pure Mg. Namely, X-ray photoelectron spectroscopy at synchrotron Elettra was used as a surface sensitive direct method to determine the valence of Mg and O and the valence band states at the early stage of oxide formation over a principal, most densely packed, crystallographic plane (0001) in pure Mg. The mechanisms of oxygen adsorption on magnesium free surface followed by oxidation (i.e. initiation and kinetics of MgO formation) are clarified.

Keywords

  • Magnesium
  • Oxidation
  • X-ray photoelectron spectroscopy
  • Synchrotron radiation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-48114-2_16
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   159.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-48114-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pollock TM. Science 2010;328:986.

    CrossRef  Google Scholar 

  2. Agnew SR, Nie IF. Scripta Materialia 2010;63:671.

    CrossRef  Google Scholar 

  3. Witte F. Acta Biomaterialia 2010;6:1680.

    CrossRef  Google Scholar 

  4. McCall CR, Hill MA, Lillard RS. Corrosion Engineering, Science and Technology 2005;40:337.

    Google Scholar 

  5. Orlov D, Ralston KD, Birbilis N, Estrin Y. Acta Mater. 2011;59:6176.

    CrossRef  Google Scholar 

  6. Atrens A, Song G-L, Liu M, Shi Z, Cao F, Dargusch MS. Advanced Engineering Materials 2015;17:400.

    CrossRef  Google Scholar 

  7. Hüfner S. Photoelectron Spectroscopy Principles and Applications: Springer-Verlag Berlin Heidelberg, 2003.

    CrossRef  Google Scholar 

  8. Sprunger PT, Pohl K, Davis HL, Plummer EW. Surface Science 1993;297:L48.

    CrossRef  Google Scholar 

  9. Cho J-H, Ismail, Zhang Z, Plummer EW. Physical Review B 1999;59:1677.

    CrossRef  Google Scholar 

  10. Kammerer R, Barth J, Gerken F, Kunz C, Flodstrøm SA, Johansson LI. Physical Review B 1982;26:3491.

    CrossRef  Google Scholar 

  11. Cho J-H, Kim KS, Lee S-H, Kang M-H, Zhang Z. Physical Review B 2000;61:9975.

    CrossRef  Google Scholar 

  12. Thiry PA, Ghijsen J, Sporken R, Pireaux JJ, Johnson RL, Caudano R. Physical Review B 1989;39:3620.

    CrossRef  Google Scholar 

  13. Hellman A. Physical Review B 2005;72:201403.

    CrossRef  Google Scholar 

  14. Schröder E, Fasel R, Kiejna A. Physical Review B 2004;69:115431.

    Google Scholar 

  15. Schröder E, Fasel R, Kiejna A. Physical Review B 2004;69:193405

    Google Scholar 

  16. Carley AF, Davies PR, Jones RV, Harikumar KR, Roberts MW. Chemical Communications 2002:2020.

    Google Scholar 

  17. Driver SM, Lüdecke J, Jackson GJ, Woodruff DP. J. Electron Spectrosc. Rel. Phenom. 1999;98–99:235.

    CrossRef  Google Scholar 

  18. Cheng S-T, Todorova M, Freysoldt C, Neugebauer J. Physical Review Letters 2014;113:136102.

    CrossRef  Google Scholar 

  19. Reuter K. Nanometer and sub-nanometer thin oxide films at surfaces of late transition metals. In: Heiz U, Hakkinen H, Landman U, editors. Nanocatalysis: Principles, Methods, Case Studies. 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Gardonio, S., Fanetti, M., Valant, M., Orlov, D. (2016). Atomic-Level Mechanisms of Magnesium Oxidation. In: Singh, A., Solanki, K., Manuel, M.V., Neelameggham, N.R. (eds) Magnesium Technology 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48114-2_16

Download citation