Skip to main content

Fabrication of Carbon Nanotube Reinforced Aluminum Matrix Composites via Friction Stir Processing

  • Chapter
Friction Stir Welding and Processing VII
  • 1457 Accesses

Abstract

In this study, CNTs reinforced pure Al, 6061Al and 2009Al composites with uniformly dispersed CNTs were successfully fabricated by a combination of powder metallurgy and subsequent multi-pass friction stir processing (FSP). As the FSP pass increased, the CNT clusters were broken down due to the shear flow of the Al matrix during FSP, however, the CNTs were cut short. After 4-pass FSP, the CNTs were individually dispersed in the aluminum matrix along grain boundaries resulting in a much finer grain size. Although the CNTs were shortened and some Al4C3 formed in the matrix, the layer structures of the CNTs were well retained and the CNT-Al interface was good bonded. Compared to the Al matrix, the strength, especially the yield strength of the composites increased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy, “Young’s modulus of single-walled nanotubes”, Phys Rev B, 58 (20) (1998), 14013–14109.

    Article  Google Scholar 

  2. E.W. Wong, P.E. Sheehan, CM. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes”, Science, 277 (5334) (1997), 1971–1975.

    Article  Google Scholar 

  3. J.P. Salvetat-Delmotte, A. Rubio, “Mechanical properties of carbon nanotubes: a fiber digest for beginners”, Carbon, 40 (10) (2002), 1729–1734.

    Article  Google Scholar 

  4. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. De, “Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes”, Science, 283 (5407) (1999), 1513–1516.

    Article  Google Scholar 

  5. Y.A. Kim, T. Hayashi, M. Endo, Y. Gotoh, N. Wada, J. Seiyama, “Fabrication of aligned carbon nanotube-filled rubber composite”, Scripta Mater, 54 (1) (2006), 31–35.

    Article  Google Scholar 

  6. I. Ahmad I, M. Unwin, H. Cao, YQ. Zhu, “Multi-walled carbon nanotubes reinforced AI2O3 nanocomposites: Mechanical properties and interfacial investigations”, Compos Sci Technol, 70 (8) (2010), 1199–1206.

    Article  Google Scholar 

  7. CE Deng, D.Z. Wang, “Processing and properties of carbon nanotubes reinforced aluminum composites”, Mater Sci Eng A, 444 (1–2) (2007),: 138–145.

    Article  Google Scholar 

  8. H.J. Choi, G.B. Kwon, G.Y Lee, D.H. Bae, “Reinforcement with carbon nanotubes in aluminum matrix composites”, Scripta Mater, 59 (3) (2008), 360–363.

    Article  Google Scholar 

  9. K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, B. Fugetsu, “Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes”, Compo Sci Technol, 69 (7–8) (2009), 1077–1081.

    Article  Google Scholar 

  10. P.B. Berbon, WH. Bingel, R.S. Mishra, C.C. Bampton, M.W Mahoney, “Friction stir processing: a tool to homogenize nanocomposite aluminum alloys”, Scripta Mater, 44 (1) (2001), 61–66.

    Article  Google Scholar 

  11. R.S. Mishra, Z.Y Ma, I. Charit, “Friction stir processing: a novel technique for fabrication of surface composite”, Mater Sci Eng A, 341 (1–2) (2003), 307–310.

    Article  Google Scholar 

  12. Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusum, “Nanocrystallized magnesium alloy-uniform dispersion of C60 molecules” Scripta Mater, 55 (11) (2006), 1067–1070.

    Article  Google Scholar 

  13. L.B. Johannes, L.L. Yowell, E. Sosa, S. Arepalli and R.S. Mishra, “Survivability of single-walled carbon nanotubes during friction stir processing”, Nanotechnology, 17 (12) (2006), 3081–3084.

    Article  Google Scholar 

  14. Y Morisada, H. Fujii, T. Nagaoka, M. Fukusumi, “MWCNTs/AZ31 surface composites fabricated by friction stir processing”, Mater Sci Eng A, 419 (1–2) (2006), 344–348.

    Article  Google Scholar 

  15. A.H. Feng, Z.Y. Ma, “Enhanced mechanical properties of Mg-Al-Zn cast alloy via friction stir processing”, Scripta Mater, 56 (5) (2007), 397–400.

    Article  Google Scholar 

  16. R.S. Mishra, Z.Y. Ma, “Friction stir welding and processing”, Mater Sci Eng R 50 (1–2) (2005), 1–78.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Ma, Z.Y., Liu, Z.Y., Xiao, B.L., Wang, W.G. (2013). Fabrication of Carbon Nanotube Reinforced Aluminum Matrix Composites via Friction Stir Processing. In: Mishra, R., Mahoney, M.W., Sato, Y., Hovanski, Y., Verma, R. (eds) Friction Stir Welding and Processing VII. Springer, Cham. https://doi.org/10.1007/978-3-319-48108-1_3

Download citation

Publish with us

Policies and ethics