Skip to main content

The Microstructure and Mechanical Properties of Magnetic Shape Memory Alloys NiCo40+xAl30-x [X=0、 3、 6、 10]

  • Chapter
Advanced Composites for Aerospace, Marine, and Land Applications
  • 1291 Accesses

Abstract

Detailed investigations of the microstructure and mechanical properties of NiCo40+xAl30-x(X=0、 3、 6、 10) alloys have been performed. The results revealed that the microstructure of specimens were consisted of the primary dendrite and inter-dendritic eutectic structure (γ+ßtwo phase structure), and martensitic arise in matrix phase emerge good self-accommodation effect. The martensitic transition temperature of sample with high content Co-Al ratio was above room temperature. The mechanical studied by both hardness and compressive test. The γ phase appears better ductility than ß phase. Hence the mechanical properties of the specimens were significantly improved with the volume fraction of γ phase. While the volume fraction of γ phase from 6% to 63% and the compressive strength from 2759 MPa to 3455 MPa, respectively. In addition, the compressive strain of alloys rise over 45%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ganor Y, Shilo D, Zarrouati N, James RD. Ferromagnetic shape memory flapper. Sensors and Actuators- PHYSICAL 2009;150 (2):277–9.

    Article  Google Scholar 

  2. Ullakko K. Magnetically controlled shape memory alloys: A new class of actuator materials. Journal of Materials Engineering and Performance 1996; 5 (3), 405–9.

    Article  Google Scholar 

  3. FUNAYAMA T, SAKAI I. Mn Substitution Effect on Magnetostriction Temperature-Dependence in TB0.3DY0.7FE2. Applied Physics Letters, 1992, 61(1), 114–5.

    Article  Google Scholar 

  4. Sozinov A, Ullakko K. Crystal structures and magnetic anisotropy properties of Ni-Mn-Ga martensitic phases with giant magnetic-field-induced strain. IEEE Transactions on Magnetics 2002, 38(5), 2814–6.

    Article  Google Scholar 

  5. O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys. Journal of Applied Physics 1998, 83(6), 3263–70.

    Article  Google Scholar 

  6. Ullakko K, Kantner C, Kokorin VV. Large magnetic-field-induced strains in Ni2MnGa single crystals. Applied Physics Letters 1996, 69 (13), 1966–8.

    Article  Google Scholar 

  7. Li J, Li J. Effects of solidification rate and temperature gradient on micro structure and crystal orientation of Co32Ni40Al28 alloys. Materials Letters 2012;68:40–3.

    Article  Google Scholar 

  8. Scheerbaum N, Kraus R, Liu J, Skrotzki W, Schultz L, Gutfleisch O. Reproducibility of martensitic transformation and phase constitution in Ni — Co -Al. Intermetallics 2012;20(l):55–62.

    Article  Google Scholar 

  9. Li JZ, Huang B, Li JG. Growth of large crystallites of Co37Ni34Al29 ferromagnetic shape memory alloys under super-high temperature gradient directional solidification. Journal of Crystal Growth 2011;317(1):110–4.

    Article  Google Scholar 

  10. Maziarz W. Structure changes of Co — Ni — Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling. Journal of Alloy and Compounds, 2008; 448(l-2):223–6.

    Article  Google Scholar 

  11. Liu J, Li JG. Micro structure, shape memory effect and mechanical properties of rapidly solidified Co — Ni — Al magnetic shape memory alloys. Materials Science and Engineering: A 2007; 454 — 455:423–32.

    Article  Google Scholar 

  12. Liu J, Zheng HX, Li JG. Effect of solidification rate on micro structure and crystal orientation of ferromagnetic shape memory alloys Co — Ni — Al. Materials Science and Engineering: A 2006, 438–440(04): 1061–4.

    Article  Google Scholar 

  13. Liu J, Li JG. Magnetic force microscopy observations of Co — Ni — Ga and Co -Ni — Al alloys with two-phase structures. Scripta Materialia 2006;55(9):755–8.

    Article  Google Scholar 

  14. Valiullin Al, Kositsin SV, Kositsina II, Kataeva NV, Zavalishin VA. Study of ferromagnetic Co — Ni — Al alloys with thermoelastic L10 martensite. Materials Science and Engineering: A 2006, pp. 1041–4.

    Google Scholar 

  15. Wang HY, Liu ZH, Wang YG, Duan XF, Wu GH. Micro structure of martensitic phase in the Co39Ni33A128 shape memory alloys revealed by transmission electron microscopy. Journal of Alloys and Compounds 2005, 400(1–2), pp.145–9.

    Article  Google Scholar 

  16. Hiraga K, Ohsuna T, Sun W, Sugiyama K. The structural characteristics of Al -Co — Ni decagonal quasicrystals and crystalline approximants. Journal of Alloys and Compounds 2002, 342(1–2), pp. 110–4.

    Article  Google Scholar 

  17. Oikawa K, Wulff L, Iijima T, Gejima F, Ohmori T, Fujita A, Fukamichi K, Kainuma R, Ishida K. Promising ferromagnetic Ni-Co-Al shape memory alloy system. Applied Physics Letters, 2001, 79(20), pp. 3290–2.

    Article  Google Scholar 

  18. Cervellino A, Haibach T, Steurer W. Modeling atomic surfaces for the Al — Ni -Co basic decagonal phase. Materials Science and Engineering: A 2000, 294 — 296, pp. 276–8.

    Article  Google Scholar 

  19. Sato TJ, Hirano T, Tsai AP. Single-crystal growth of the decagonal Al — Ni — Co quasicrystal. Journal of Crystal Growth 1998, 191(3), pp. 545–52.

    Article  Google Scholar 

  20. Kainuma R, Ise M, Jia CC, Ohtani H, Ishida K. Phase equilibria and micro structural control in the Ni-Co-Al system. Intermetallics 1996; Vol. 4, Supplement 1, pp. S151–8.

    Article  Google Scholar 

  21. Khandelwal A, Sharma VK, Sharath Chandra LS, Arora P, Chattopadhyay MK, Roy, S.B. The magnetic properties across the martensitic transition in the Co38Ni34A128 alloy. Journal of Magnetic Materials 2012, 324(5), pp. 729–34.

    Article  Google Scholar 

  22. Morito H, Oikawa K, Fujita A, Fukamichi K, Kainuma R, Ishida K. Large magnetic-field-induced strain in Co — Ni — Al single-variant ferromagnetic shape memory alloy. Scripta Materialia, 2010, 63(4), pp. 379–82.

    Article  Google Scholar 

  23. Chatterjee S, Thakur M, Giri S, Majumdar S, Deb AK, De SK. Transport, magnetic and structural investigations of Co — Ni — Al shape memory alloy. Journal of Alloys and Compounds 2008, 456(1–2), pp. 96–100.

    Article  Google Scholar 

  24. Tanaka Y, Oikawa K, Sutou Y, Omori T, Kainuma R, Ishida K. Martensitic transition and superelasticity of Co — Ni — Al ferromagnetic shape memory alloys with β + γ two-phase structure. Materials Science and Engineering: A 2006, 438–440, pp. 1054–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Ju, J., Xue, F., Zhou, J., Bai, J., Liu, H. (2014). The Microstructure and Mechanical Properties of Magnetic Shape Memory Alloys NiCo40+xAl30-x [X=0、 3、 6、 10]. In: Sano, T., Srivatsan, T.S., Peretti, M.W. (eds) Advanced Composites for Aerospace, Marine, and Land Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48096-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48096-1_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48592-8

  • Online ISBN: 978-3-319-48096-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics