Skip to main content

Data-Fusion NDE for Progressive Damage Quantification in Composites

  • Chapter
Advanced Composites for Aerospace, Marine, and Land Applications

Abstract

The objective of this article is to present a progressive damage quantification framework for fiber reinforced polymer composites (FRPC) that have widespread use in aerospace and wind-turbine applications. To this aim, a novel optico-acoustic nondestructive evaluation (NDE) setup is presented based on integration of Digital Image Correlation (DIC), Acoustic Emission (AE), and Infrared Thermography (IRT). DIC and IRT full-field strain and temperature maps reveal early development of structural hot spots, associated with locations where inelastic strains accumulate, damage initiates, and final fracture occurs in both tensile and fatigue experiments. Damage quantification is further related to: (i) energy dissipation, (ii) residual stiffness, (iii) average both temporal and spatial temperature variations, and (iv) AE features in time and frequency domains. The extracted NDE parameters suggest three characteristic stages of fatigue life that can be used to construct appropriate models for reliable remaining life-predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saheb, N.D. and . J.P JOG, Natural Fiber Polymer Composites : A Review. Advances in Polymer Technology, 1999. 18(4): p. 351–363.

    Article  Google Scholar 

  2. Toldy, A., B. Szolnoki, and G. Marosi, Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polymer Degradation and Stability, 2011. 96(3): p. 371–376.

    Article  Google Scholar 

  3. Kumar, S., et al., Development and characterization of polymer-ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerospace Science and Technology, (0).

    Google Scholar 

  4. Mandell, J.F., et al., Analysis of SNL / MSU / DOE Fatigue Database Trends for Wind Turbine Blade Materials. 2010(December).

    Book  Google Scholar 

  5. Ghasemnejad, H., L. Occhineri, and D.T. Swift-Hook, Post-buckling failure in multi-delaminated composite wind turbine blade materials. Materials & Design, 2011. 32(10): p. 5106–5112.

    Article  Google Scholar 

  6. Hazeli K., et al., In situ identification of twin-related bands near yielding in a magnesium alloy. Scripta Materialia, 2013. 68(1): p. 83–86.

    Article  Google Scholar 

  7. Phoenix, S.L., Modeling the statistical lifetime of glass fiber/polymer matrix composites in tension. Composite Structures, 2000. 48: p. 19–29.

    Article  Google Scholar 

  8. Talreja, R., Damage and fatigue in composites — A personal account. Composites Science and Technology, 2008. 68(13): p. 2585–2591.

    Article  Google Scholar 

  9. Tan Dharan, T. and C. Cyclic Hysteresis Evolution as a Damage Parameter for Notched Composite Laminates. Journal of Composite Materials, 2010. 44(16): p. 1977–1990.

    Article  Google Scholar 

  10. Kaddour, A.S., et al., 16th International Conference on composite materials damage theories for fibre-reinforced polymer composites: the third World-Wide Failure Exercise (WWFE-III). 2007.

    Google Scholar 

  11. Broughton, W.R., et al., Assessment of Quasi-Static and Fatigue Loaded Notched GRP Laminates Using Digital Image Correlation. Applied Mechanics and Materials, 2010. 24–25: p. 407–412.

    Article  Google Scholar 

  12. Giancane, S., et al., Fatigue damage evolution of fiber reinforced composites with digital image correlation analysis. Procedia Engineering, 2010. 2(1): p. 1307–1315.

    Article  Google Scholar 

  13. Bisagni, C. and C. Walters, Experimental investigation of the damage propagation in composite specimens under biaxial loading. Composite Structures, 2008. 85(4): p. 293–310.

    Article  Google Scholar 

  14. Marec, a., J.H. Thomas, and R. El Guerjouma, Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data. Mechanical Systems and Signal Processing, 2008. 22(6): p. 1441–1464.

    Article  Google Scholar 

  15. Loutas, T.H., et al., Fatigue Damage Monitoring in Carbon Fiber Reinforced Polymers Using the Acousto-Ultrasonics Technique. 2010.

    Google Scholar 

  16. Bentahar, M. and R. El Guerjouma, Monitoring progressive damage in polymer-based composite using nonlinear dynamics and acoustic emission. The Journal of the Acoustical Society of America, 2009. 125(1): p. EL39–44.

    Article  Google Scholar 

  17. Reis, P.F., Jose; Richardson Mel, Fatigue Damage Characterization by NDT. Applied Composite Materials, 2011. 18: p. 409–419.

    Article  Google Scholar 

  18. Bourchak, M., et al., Acoustic emission energy as a fatigue damage parameter for CFRP composites. International Journal of Fatigue, 2007. 29(3): p. 457–470.

    Article  Google Scholar 

  19. Innocenti, M., et al., Properties of oxide/oxide CMC s for high temperature applications in gas turbines. (I).

    Google Scholar 

  20. Fazzino, P.D., K.L. Reifsnider, and P. Majumdar, Impedance spectroscopy for progressive damage analysis in woven composites. Composites Science and Technology, 2009. 69(11–12): p. 2008–2014.

    Article  Google Scholar 

  21. Wang, D., et al., Sensitivity of the two-dimensional electric potential/resistance method for damage monitoring in carbon fiber polymer-matrix composite. Journal of Materials Science, 2006. 41(15): p. 4839–4846.

    Article  Google Scholar 

  22. Meo, M., U. Polimeno, and G. Zumpano, Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods. Applied Composite Materials, 2008. 15(3): p. 115–126.

    Article  Google Scholar 

  23. Eliopoulos, E.N. and T.P. Philippidis, A progressive damage simulation algorithm for GFRP composites under cyclic loading. Part II. FE implementation and model validation. Composites Science and Technology, 2011. 71(5): p. 750–757.

    Article  Google Scholar 

  24. Van Paepegem, W., et al., Monitoring quasi-static and cyclic fatigue damage in fibre-reinforced plastics by Poisson’s ratio evolution. International Journal of Fatigue, 2010. 32(1): p. 184–196.

    Article  Google Scholar 

  25. Kang, K.-W., D.-M. Lim, and J.-K. Kim, Probabilistic analysis for the fatigue life of carbon/epoxy laminates. Composite Structures, 2008. 85(3): p. 258–264.

    Article  Google Scholar 

  26. Allix, O. and L. Blanchard, Mesomodeling of delamination: towards industrial applications. Composites Science and Technology, 2006. 66(6): p. 731–144.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Cuadra, J., Vanniamparambil, P.A., Hazeli, K., Bartoli, I., Kontsos, A. (2014). Data-Fusion NDE for Progressive Damage Quantification in Composites. In: Sano, T., Srivatsan, T.S., Peretti, M.W. (eds) Advanced Composites for Aerospace, Marine, and Land Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48096-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48096-1_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48592-8

  • Online ISBN: 978-3-319-48096-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics