Skip to main content

Abstract

The present work is focused on the study of the effect of the directional solidification on the SiC particles distribution inside the zinc-aluminum matrix during the columnar — to — equiaxed (CET) phenomenon. The following parameters were measured: cooling rates, temperature gradients, interphase velocities on the solidification microstructure of the MMCs. The following tests were carried out on the composite: optical microscopy, EDS, Vickers microhardness (HV) and Electrochemical Impedance Spectroscopy (EIS) technique. The primary dendrite arm spacing in composite is smaller than in the matrix alloy. The HV values of composites directionally solidified are higher than the HV values of alloys in all structures (columnar, CET and equiaxed). The results also indicate that the corrosion resistance of Zn-Al-SiC composites has demonstrated the improvement in comparison to ZA alloys in 3wt.% NaCl solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Rappaz, Modelling of microstructure formation in solidification process. International Materials Reviews 1989; 34 (3): 93–123.

    Article  Google Scholar 

  2. J.E. Spittle, Columnar to equiaxed grain transition in as solidified alloys. International Materials Reviews 2006; 51 (4): 247–269.

    Article  Google Scholar 

  3. M. Sahoo, L.V. Whiting, Foundry characteristics of sand cast Zn-Al alloys. AFS Transactions 1984; 92: 861–870.

    Google Scholar 

  4. M. Sahoo, L.V. Whiting, W.G. Whited, Control of underside shrinkage in Zinc-aluminum foundry alloys by the addition of trace elements. AFS Transactions 1985; 93: 475–480.

    Google Scholar 

  5. E. Gervais, H. Levert, Bess M. The development of a family of zinc base foundry alloys. AFS Transactions 1980; 88: 183–194.

    Google Scholar 

  6. D. Delneuville, Tribological behaviour of Zn-Al alloys (ZA27) compared with bronze when used as a bearing material with high load and at very low speed. Wear 1985; 105, 283–292.

    Google Scholar 

  7. R. Auras, C. E. Schvezov, Wear behavior, microstructure, and dimensional stability of as-cast zinc-aluminum/SiC (metal matrix composites) alloys. Metallurgical and Materials Transactions A 2004; 35, 1579–1590.

    Article  Google Scholar 

  8. A.E. Ares, CE. Schvezov, International Foundry Research/Giessereiforschung 60 (2008) 2–9.

    Google Scholar 

  9. A.E. Ares, CE. Schvezov, Columnar-to-equiaxed transition in metal matrix composites, 142nd Annual Meeting and Exhibition: Linking Science and Technology for Global Solutions, TMS 2013; San Antonio, TX; United States; 3 March 2013 through 7 March 2013.

    Google Scholar 

  10. Ares AE, Caram R, Schvezov CE. Solidification Structures and Properties of Zinc- Aluminium /SiC (MMC) Alloys, Solidification Processing of Metal Matrix Composites. In: Proceedings of Solidification Processing of Metal Matrix Composites — Rohatgi Honorary Symposium. 2006 TMS Annual Meeting. San Antonio, Texas, USA, March, 2006. p. 183–193.

    Google Scholar 

  11. Ares AE, Schvezov CE. Solidification parameters during the columnar-to-equiaxed transition in Lead-Tin alloys. Metallurgical and Materials Transactions A 2000; 31, 1611–1625.

    Article  Google Scholar 

  12. Ares AE, Schvezov CE. Influence of solidification thermal parameters on the columnar-to- equiaxed transition of Aluminum-Zinc and Zinc-Aluminum alloys. Metallurgical and Materials Transactions A 2007; 38:1485–1499.

    Article  Google Scholar 

  13. G.F. Vander Voort, Metallography Principles and Practice. New York: ASM International, 2000.

    Google Scholar 

  14. RF. Speyer, Thermal Analysis of Materials, New York: Marcel Dekker, 1994.

    Google Scholar 

  15. YT Zhu, JH. Devletian, Application of Differential Thermal Analysis to Solid-Solid Transitions in Phase Diagram. Journal of Phase Equilibria 1994; 15: 37–41.

    Article  Google Scholar 

  16. W.J. Moffatt, Handbook of Binary Phase Diagrams. New York: General Electric Company Corporate Research and Development Technology Marketing Operation, 1984.

    Google Scholar 

  17. A.E. Ares, S.F. Gueijman, CE. Schvezov, Semiempirical modeling for columnar and equiaxed growth of alloys. Journal of Crystal Growth 2002; 241: 235–240.

    Article  Google Scholar 

  18. A.E. Ares, S.F. Gueijman, R. Caram, CE. Schvezov, Analysis of solidification parameters during solidification of lead and aluminum base alloys. Journal of Crystal Growth 2005; 275: 319–325.

    Article  Google Scholar 

  19. R.B. Mahapatra, F. Weinberg, The columnar to equiaxed transition in Tin-Lead alloys. Metallurgical and Materials Transaction B 1987; 18: 425–432.

    Article  Google Scholar 

  20. I. Ziv, F. Weinberg, The columnar-to-equiaxed transition in Al 3 Pet Cu. Metallurgical and Materials Transaction B 1989; 20: 731–734.

    Google Scholar 

  21. T.M. Pollock, W.H. Murphy, The breakdown of single-crystal solidification in high refractory nickel-base alloys. Metallurgical and Materials Transactions A 1996; 27: 1081–1094.

    Article  Google Scholar 

  22. Ch. A. Gandin, Experimental study of the transition from constrained to unconstrained growth during directional solidification. ISIJ International 2000; 40 (10): 971–979.

    Article  Google Scholar 

  23. Ch. A. Gandin, From constrained to unconstrained growth during directional solidification. Acta Materialia 2000; 48: 2483–2501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Ares, A.E., Schvezov, C.E. (2014). Metal Matrix Composites Directionally Solidified. In: Sano, T., Srivatsan, T.S., Peretti, M.W. (eds) Advanced Composites for Aerospace, Marine, and Land Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48096-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48096-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48592-8

  • Online ISBN: 978-3-319-48096-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics