Skip to main content

Fabrication, Properties and Applications of Plasmene Nanosheet

  • Chapter
  • First Online:
Book cover Reviews in Plasmonics 2016

Part of the book series: Reviews in Plasmonics ((RIP,volume 2016))

Abstract

Plasmene nanosheets are free standing, one-particle thick superlattices from the self-assembly of plasmonic nanoparticles. Such nanosheets are a new class of two-dimensional (2D) nanomaterials with unique materials properties that differ from the constituent nanoparticles or corresponding bulk materials. Their optical, mechanical and ion-transporting properties could be tuned by adjusting the sizes and shapes of constituent nanoparticles, and controlling the interparticle spacing during self-assembly process. Here, we first discuss the viable plasmene nanosheet-fabrication approaches including programmable assembly, micro-hole confined assembly, liquid-liquid interfacial assembly and air-water interfacial assembly. Then, we describe the unique plasmonic and mechanical properties of plasmene nanosheets. Such soft nanosheets could further shaped into one-dimensional (1D) nanoribbons and three-dimensional (3D) origami by focused ion beam lithography. Finally, we show how these properties can be utilized for various technical applications including mechanical resonator, surface-enhanced Raman scattering (SERS) substrate, drug identification and anti-counterfeit security label. We believe that plasmene nanosheets represent a “newborn” in the 2D materials family, which may lead to the design of novel metamaterials with unexpected applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xia Y, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30(5):338–348

    Article  CAS  Google Scholar 

  2. Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6(5):268–276

    Article  CAS  PubMed  Google Scholar 

  3. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    Article  CAS  PubMed  Google Scholar 

  4. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    Article  CAS  Google Scholar 

  5. Kinge S, Crego-Calama M, Reinhoudt DN (2008) Self-assembling nanoparticles at surfaces and interfaces. Chemphyschem Eur J Chem Phys Phys Chem 9(1):20–42

    CAS  Google Scholar 

  6. Si KJ, Sikdar D, Chen Y, Eftekhari F, Xu Z, Tang Y, Xiong W, Guo P, Zhang S, Lu Y, Bao Q, Zhu W, Premaratne M, Cheng W (2014) Giant plasmene nanosheets, nanoribbons, and oirigami. ACS Nano 8(11):11086–11093

    Article  CAS  PubMed  Google Scholar 

  7. Klinkova A, Choueiri RM, Kumacheva E (2014) Self-assembled plasmonic nanostructures. Chem Soc Rev 43(11):3976–3991

    Article  CAS  PubMed  Google Scholar 

  8. Liao J, Blok S, van der Molen SJ, Diefenbach S, Holleitner AW, Schönenberger C, Vladyka A, Calame M (2015) Ordered nanoparticle arrays interconnected by molecular linkers: electronic and optoelectronic properties. Chem Soc Rev 44(4):999–1014

    Article  CAS  PubMed  Google Scholar 

  9. Quan Z, Fang J (2010) Superlattices with non-spherical building blocks. Nano Today 5(5):390–411

    Article  CAS  Google Scholar 

  10. Mattoussi H, Rubner MF, Zhou F, Kumar J, Tripathy SK, Chiang LY (2000) Photovoltaic heterostructure devices made of sequentially adsorbed poly(phenylene vinylene) and functionalized C60. Appl Phys Lett 77(10):1540–1542

    Article  CAS  Google Scholar 

  11. Koktysh DS, Liang X, Yun BG, Pastoriza-Santos I, Matts RL, Giersig M, Serra-Rodríguez C, Liz-Marzán LM, Kotov NA (2002) Biomaterials by design: layer-by-layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring. Adv Funct Mater 12(4):255–265

    Article  CAS  Google Scholar 

  12. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2(1):36–50

    Article  CAS  PubMed  Google Scholar 

  13. Zhou M, Lou XW, Xie Y (2013) Two-dimensional nanosheets for photoelectrochemical water splitting: possibilities and opportunities. Nano Today 8(6):598–618

    Article  CAS  Google Scholar 

  14. Sun S, Murray CB (1999) Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J Appl Phys 85(8):4325–4330

    Article  CAS  Google Scholar 

  15. Dong A, Chen J, Vora PM, Kikkawa JM, Murray CB (2010) Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466(7305):474–477

    Article  CAS  PubMed  Google Scholar 

  16. Dong A, Ye X, Chen J, Murray CB (2011) Two-dimensional binary and ternary nanocrystal superlattices: the case of monolayers and bilayers. Nano Lett 11(4):1804–1809

    Article  CAS  PubMed  Google Scholar 

  17. Cargnello M, Johnston-Peck AC, Diroll BT, Wong E, Datta B, Damodhar D, Doan-Nguyen VVT, Herzing AA, Kagan CR, Murray CB (2015) Substitutional doping in nanocrystal superlattices. Nature 524(7566):450–453

    Article  CAS  PubMed  Google Scholar 

  18. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(1):389–458

    Article  CAS  PubMed  Google Scholar 

  19. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217

    Article  CAS  PubMed  Google Scholar 

  20. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60(1):167–192

    Article  CAS  PubMed  Google Scholar 

  21. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791

    Article  CAS  PubMed  Google Scholar 

  22. You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42(7):2880–2904

    Article  CAS  PubMed  Google Scholar 

  23. Csáki A, Thiele M, Jatschka J, Dathe A, Zopf D, Stranik O, Fritzsche W (2015) Plasmonic nanoparticle synthesis and bioconjugation for bioanalytical sensing. Eng Life Sci 15(3):266–275

    Article  CAS  Google Scholar 

  24. Kretschmer F, Mühlig S, Hoeppener S, Winter A, Hager MD, Rockstuhl C, Pertsch T, Schubert US (2014) Survey of plasmonic nanoparticles: from synthesis to application. Part Part Syst Charact 31(7):721–744

    Article  Google Scholar 

  25. Bigall NC, Eychmüller A (2010) Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philos Trans R Soc London Math Phys Eng Sci 368(1915):1385–1404

    Article  CAS  Google Scholar 

  26. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  27. FRENS G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  CAS  Google Scholar 

  28. Wuithschick M, Birnbaum A, Witte S, Sztucki M, Vainio U, Pinna N, Rademann K, Emmerling F, Kraehnert R, Polte J (2015) Turkevich in new robes: key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9(7):7052–7071

    Article  CAS  PubMed  Google Scholar 

  29. Brown KR, Natan MJ (1998) Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14(4):726–728

    Article  CAS  Google Scholar 

  30. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5−40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786

    Article  CAS  Google Scholar 

  31. Ziegler C, Eychmüller A (2011) Seeded growth synthesis of uniform gold nanoparticles with diameters of 15−300 nm. J Phys Chem C 115(11):4502–4506

    Article  CAS  Google Scholar 

  32. Si KJ, Sikdar D, Yap LW, Foo JKK, Guo P, Shi Q, Premaratne M, Cheng W (2015) Dual-coded plasmene nanosheets as next-generation anticounterfeit security labels. Adv Opt Mater 3(12):1710–1717

    Article  CAS  Google Scholar 

  33. Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13(7):2313–2322

    Article  CAS  Google Scholar 

  34. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    Article  CAS  PubMed  Google Scholar 

  35. Grochola G, Snook IK, Russo SP (2008) Influence of substrate morphology on the growth of gold nanoparticles. J Chem Phys 129(15):154708

    Article  PubMed  CAS  Google Scholar 

  36. Liu M, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109(47):22192–22200

    Article  CAS  PubMed  Google Scholar 

  37. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175

    Article  CAS  Google Scholar 

  38. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109(29):13857–13870

    Article  CAS  PubMed  Google Scholar 

  39. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067

    Article  CAS  Google Scholar 

  40. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15(5):414–416

    Article  CAS  Google Scholar 

  41. Nikoobakht B, El-Sayed MA (2001) Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17(20):6368–6374

    Article  CAS  Google Scholar 

  42. Gao J, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19(21):9065–9070

    Article  CAS  Google Scholar 

  43. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901

    Article  CAS  Google Scholar 

  44. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389

    Article  CAS  Google Scholar 

  45. Li Q, Zhuo X, Li S, Ruan Q, Xu Q-H, Wang J (2015) Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv Opt Mater 3(6):801–812

    Article  CAS  Google Scholar 

  46. Shi Q, Si KJ, Sikdar D, Yap LW, Premaratne M, Cheng W (2016) Two-dimensional bipyramid plasmonic nanoparticle liquid crystalline superstructure with four distinct orientational packing orders. ACS Nano 10(1):967–976

    Article  CAS  PubMed  Google Scholar 

  47. Personick ML, Langille MR, Zhang J, Harris N, Schatz GC, Mirkin CA (2011) Synthesis and isolation of {110}-faceted gold bipyramids and rhombic dodecahedra. J Am Chem Soc 133(16):6170–6173

    Article  CAS  PubMed  Google Scholar 

  48. Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G (2009) Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J Am Chem Soc 131(2):697–703

    Article  CAS  PubMed  Google Scholar 

  49. Hsiangkuo Y, Christopher GK, Hanjun H, Christy MW, Gerald AG, Tuan V-D (2012) Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23(7):075102

    Article  CAS  Google Scholar 

  50. Grzelczak M, Sánchez-Iglesias A, Rodríguez-González B, Alvarez-Puebla R, Pérez-Juste J, Liz-Marzán LM (2008) Influence of iodide ions on the growth of gold nanorods: tuning tip curvature and surface plasmon resonance. Adv Funct Mater 18(23):3780–3786

    Article  CAS  Google Scholar 

  51. Ma Y, Li W, Cho EC, Li Z, Yu T, Zeng J, Xie Z, Xia Y (2010) Au@Ag core−shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 4(11):6725–6734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tsuji M, Miyamae N, Lim S, Kimura K, Zhang X, Hikino S, Nishio M (2006) Crystal structures and growth mechanisms of Au@Ag core−shell nanoparticles prepared by the microwave−polyol method. Cryst Growth Des 6(8):1801–1807

    Article  CAS  Google Scholar 

  53. Okuno Y, Nishioka K, Kiya A, Nakashima N, Ishibashi A, Niidome Y (2010) Uniform and controllable preparation of Au–Ag core–shell nanorods using anisotropic silver shell formation on gold nanorods. Nanoscale 2(8):1489–1493

    Article  CAS  PubMed  Google Scholar 

  54. Chen Y, Si KJ, Sikdar D, Tang Y, Premaratne M, Cheng W (2015) Ultrathin plasmene nanosheets as soft and surface-attachable SERS substrates with high signal uniformity. Adv Opt Mater 3(7):919–924

    Article  CAS  Google Scholar 

  55. Park K, Drummy LF, Vaia RA (2011) Ag shell morphology on Au nanorod core: role of Ag precursor complex. J Mater Chem 21(39):15608–15618

    Article  CAS  Google Scholar 

  56. Guo S, Dong S (2011) Metal nanomaterial-based self-assembly: development, electrochemical sensing and SERS applications. J Mater Chem 21(42):16704–16716

    Article  CAS  Google Scholar 

  57. Tao A, Sinsermsuksakul P, Yang P (2007) Tunable plasmonic lattices of silver nanocrystals. Nat Nanotechnol 2(7):435–440

    Article  CAS  PubMed  Google Scholar 

  58. Zou J, Kim F (2012) Self-assembly of two-dimensional nanosheets induced by interfacial polyionic complexation. ACS Nano 6(12):10606–10613

    CAS  PubMed  Google Scholar 

  59. Muramatsu M, Akatsuka K, Ebina Y, Wang K, Sasaki T, Ishida T, Miyake K, Haga M-a (2005) Fabrication of densely packed titania nanosheet films on solid surface by use of langmuir−blodgett deposition method without amphiphilic additives. Langmuir 21(14):6590–6595

    Article  CAS  PubMed  Google Scholar 

  60. Podsiadlo P, Michel M, Lee J, Verploegen E, Wong Shi Kam N, Ball V, Lee J, Qi Y, Hart AJ, Hammond PT, Kotov NA (2008) Exponential growth of LBL films with incorporated inorganic sheets. Nano Lett 8(6):1762–1770

    Article  CAS  PubMed  Google Scholar 

  61. Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 41(12):1831–1841

    Article  CAS  PubMed  Google Scholar 

  62. Estephan ZG, Qian Z, Lee D, Crocker JC, Park S-J (2013) Responsive multidomain free-standing films of gold nanoparticles assembled by DNA-directed layer-by-layer approach. Nano Lett 13(9):4449–4455

    Article  CAS  PubMed  Google Scholar 

  63. Bigioni TP, Lin X-M, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5(4):265–270

    Article  CAS  PubMed  Google Scholar 

  64. Cheng W, Park N, Walter MT, Hartman MR, Luo D (2008) Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Nat Nanotechnol 3(11):682–690

    Article  CAS  PubMed  Google Scholar 

  65. Retsch M, Zhou Z, Rivera S, Kappl M, Zhao XS, Jonas U, Li Q (2009) Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface. Macromol Chem Phys 210(3-4):230–241

    Article  CAS  Google Scholar 

  66. Mueggenburg KE, Lin X-M, Goldsmith RH, Jaeger HM (2007) Elastic membranes of close-packed nanoparticle arrays. Nat Mater 6(9):656–660

    Article  CAS  PubMed  Google Scholar 

  67. Cheng L, Liu A, Peng S, Duan H (2010) Responsive plasmonic assemblies of amphiphilic nanocrystals at oil−water interfaces. ACS Nano 4(10):6098–6104

    Article  CAS  PubMed  Google Scholar 

  68. Duan H, Wang D, Kurth DG, Möhwald H (2004) Directing self-assembly of nanoparticles at water/oil interfaces. Angew Chem Int Ed 43(42):5639–5642

    Article  CAS  Google Scholar 

  69. Reincke F, Hickey SG, Kegel WK, Vanmaekelbergh D (2004) Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew Chem Int Ed 43(4):458–462

    Article  CAS  Google Scholar 

  70. Mittal M, Furst EM (2009) Electric field-directed convective assembly of ellipsoidal colloidal particles to create optically and mechanically anisotropic thin films. Adv Funct Mater 19(20):3271–3278

    Article  CAS  Google Scholar 

  71. Demirörs AF, Johnson PM, van Kats CM, van Blaaderen A, Imhof A (2010) Directed self-assembly of colloidal dumbbells with an electric field. Langmuir 26(18):14466–14471

    Article  PubMed  CAS  Google Scholar 

  72. Ku JC, Ross MB, Schatz GC, Mirkin CA (2015) Conformal, macroscopic crystalline nanoparticle sheets assembled with DNA. Adv Mater 27(20):3159–3163

    Article  CAS  PubMed  Google Scholar 

  73. Lee J, Bhak G, Lee J-H, Park W, Lee M, Lee D, Jeon NL, Jeong DH, Char K, Paik SR (2015) Free-standing gold-nanoparticle monolayer film fabricated by protein self-assembly of α-synuclein. Angew Chem 127(15):4654–4659

    Article  Google Scholar 

  74. Cheng W, Campolongo MJ, Cha JJ, Tan SJ, Umbach CC, Muller DA, Luo D (2009) Free-standing nanoparticle superlattice sheets controlled by DNA. Nat Mater 8(6):519–525

    Article  CAS  PubMed  Google Scholar 

  75. Cheng W, Campolongo MJ, Tan SJ, Luo D (2009) Freestanding ultrathin nano-membranes via self-assembly. Nano Today 4(6):482–493

    Article  CAS  Google Scholar 

  76. Campolongo MJ, Tan SJ, Smilgies D-M, Zhao M, Chen Y, Xhangolli I, Cheng W, Luo D (2011) Crystalline Gibbs monolayers of DNA-capped nanoparticles at the air–liquid interface. ACS Nano 5(10):7978–7985

    Article  CAS  PubMed  Google Scholar 

  77. Booth SG, Dryfe RA (2015) Assembly of nanoscale objects at the liquid/liquid interface. J Phys Chem C 119(41):23295–23309

    Article  CAS  Google Scholar 

  78. Lin Y, Skaff H, Emrick T, Dinsmore A, Russell T (2003) Nanoparticle assembly and transport at liquid-liquid interfaces. Science 299(5604):226–229

    Article  CAS  PubMed  Google Scholar 

  79. Guo P, Sikdar D, Huang X, Si KJ, Su B, Chen Y, Xiong W, Yap LW, Premaratne M, Cheng W (2014) Large-scale self-assembly and stretch-induced plasmonic properties of core–shell metal nanoparticle superlattice sheets. J Phys Chem C 118(46):26816–26824

    Article  CAS  Google Scholar 

  80. Chen Y, Fu J, Ng KC, Tang Y, Cheng W (2011) Free-standing polymer–nanoparticle superlattice sheets self-assembled at the air–liquid interface. Cryst Growth Des 11(11):4742–4746

    Article  CAS  Google Scholar 

  81. Si KJ, Guo P, Shi Q, Cheng W (2015) Self-assembled nanocube-based plasmene nanosheets as soft surface-enhanced raman scattering substrates toward direct quantitative drug identification on surfaces. Anal Chem 87(10):5263–5269

    Article  CAS  PubMed  Google Scholar 

  82. Rao S, Si KJ, Yap LW, Xiang Y, Cheng W (2015) Free-standing bilayered nanoparticle superlattice nanosheets with asymmetric ionic transport behaviors. ACS Nano 9(11):11218–11224

    Article  CAS  PubMed  Google Scholar 

  83. Ng KC, Udagedara IB, Rukhlenko ID, Chen Y, Tang Y, Premaratne M, Cheng W (2012) Free-standing plasmonic-nanorod superlattice sheets. ACS Nano 6(1):925–934

    Article  CAS  PubMed  Google Scholar 

  84. Lee YH, Shi W, Lee HK, Jiang R, Phang IY, Cui Y, Isa L, Yang Y, Wang J, Li S, Ling XY (2015) Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices. Nat Commun 6:6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tirado MM, Martínez CL, de la Torre JG (1984) Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short DNA fragments. J Chem Phys 81(4):2047–2052

    Article  Google Scholar 

  86. Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5(14):1600–1630

    Article  CAS  PubMed  Google Scholar 

  87. Frenkel D (2015) Order through entropy. Nat Mater 14(1):9–12

    Article  CAS  PubMed  Google Scholar 

  88. Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann N Y Acad Sci 51(4):627–659

    Article  CAS  Google Scholar 

  89. Cho J-H, Gracias DH (2009) Self-assembly of lithographically patterned nanoparticles. Nano Lett 9(12):4049–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu L, Dong Z, Kuang M, Li Y, Li F, Jiang L, Song Y (2015) Printing patterned fine 3D structures by manipulating the three phase contact line. Adv Funct Mater 25(15):2237–2242

    Article  CAS  Google Scholar 

  91. Nie Z, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5(1):15–25

    Article  CAS  PubMed  Google Scholar 

  92. Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111(6):3669–3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tao AR, Ceperley DP, Sinsermsuksakul P, Neureuther AR, Yang P (2008) Self-organized silver nanoparticles for three-dimensional plasmonic crystals. Nano Lett 8(11):4033–4038

    Article  CAS  PubMed  Google Scholar 

  94. Boyack R, Le Ru EC (2009) Investigation of particle shape and size effects in SERS using T-matrix calculations. Phys Chem Chem Phys 11(34):7398–7405

    Article  CAS  PubMed  Google Scholar 

  95. Tian F, Bonnier F, Casey A, Shanahan AE, Byrne HJ (2014) Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Anal Methods 6(22):9116–9123

    Article  CAS  Google Scholar 

  96. Liu S, Tang Z (2010) Nanoparticle assemblies for biological and chemical sensing. J Mater Chem 20(1):24–35

    Article  Google Scholar 

  97. Shenhar R, Norsten TB, Rotello VM (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17(6):657–669

    Article  CAS  Google Scholar 

  98. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  PubMed  Google Scholar 

  99. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem Eur J Chem Phys Phys Chem 1(1):18–52

    CAS  Google Scholar 

  100. Jiang L, Liang X, You T, Yin P, Wang H, Guo L, Yang S (2015) A sensitive SERS substrate based on Au/TiO2/Au nanosheets. Spectrochim Acta A Mol Biomol Spectrosc 142:50–54

    Article  CAS  PubMed  Google Scholar 

  101. Zhong L-B, Yin J, Zheng Y-M, Liu Q, Cheng X-X, Luo F-H (2014) Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem 86(13):6262–6267

    Article  CAS  PubMed  Google Scholar 

  102. Kanjanaboos P, Lin X-M, Sader JE, Rupich SM, Jaeger HM, Guest JR (2013) Self-assembled nanoparticle drumhead resonators. Nano Lett 13(5):2158–2162

    Article  CAS  PubMed  Google Scholar 

  103. Polavarapu L, Liz-Marzan LM (2013) Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys 15(15):5288–5300

    Article  CAS  PubMed  Google Scholar 

  104. Palmieri V, Lucchetti D, Gatto I, Maiorana A, Marcantoni M, Maulucci G, Papi M, Pola R, De Spirito M, Sgambato A (2014) Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool. J Nanopart Res 16(9):1–8

    Article  CAS  Google Scholar 

  105. Farquharson S, Shende C, Sengupta A, Huang H, Inscore F (2011) Rapid detection and identification of overdose drugs in Saliva by surface-enhanced Raman scattering using fused gold colloids. Pharmaceutics 3(3):425–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Andreou C, Hoonejani MR, Barmi MR, Moskovits M, Meinhart CD (2013) Rapid detection of drugs of abuse in saliva using surface enhanced raman spectroscopy and microfluidics. ACS Nano 7(8):7157–7164

    Article  CAS  PubMed  Google Scholar 

  107. Izquierdo-Lorenzo I, Sanchez-Cortes S, Garcia-Ramos JV (2011) Trace detection ofaminoglutethimide drug by surface-enhanced Raman spectroscopy: a vibrational and adsorption study on gold nanoparticles. Anal Methods 3(7):1540–1545

    Article  CAS  Google Scholar 

  108. Cîntǎ Pînzaru S, Pavel I, Leopold N, Kiefer W (2004) Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering. J Raman Spectrosc 35(5):338–346

    Article  CAS  Google Scholar 

Download references

Acknowledgment

These researches were financially supported under the Australian Research Council’s Discovery projects funding schemes DP150103750 and DP140100052. This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shi, Q., Dong, D., Si, K.J., Cheng, W. (2017). Fabrication, Properties and Applications of Plasmene Nanosheet. In: Geddes, C. (eds) Reviews in Plasmonics 2016. Reviews in Plasmonics, vol 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-48081-7_6

Download citation

Publish with us

Policies and ethics