Advertisement

Anticipation and Placebo Analgesia

  • Dominic E. Nathan
  • Taylor M. Ludman
  • Luana Colloca
Chapter

Abstract

The neural substrates of the anticipatory phase of an impending stimulus have been studied in the context of pain with neuromapping techniques, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The neural response during the anticipatory phase is complex since it can be affected by many factors, including certainty and uncertainty, dispositional anxiety and pathology, which have been the topic of many past studies. Importantly, the anticipation of pain is affected by positive and negative expectancies , namely the placebo and nocebo phenomena which serve as great examples of how expectancies created during the anticipatory phase can modulate pain perception. Here we critically discuss the literature on the neural activity throughout the anticipatory phase preceding a noxious stimulus and during the delivery of a stimulus when placebo and nocebo effects modulate pain. Understanding the processes during the anticipatory phase and the placebo and nocebo effects can help increase knowledge of both acute and chronic pain mechanisms, identify biological predictors of variability in clinical pain phenotypes and ultimately contribute to new therapeutic approaches.

Keywords

Anticipation Expectancies Placebo Nocebo Brain imaging 

Abbreviations

Amy

Amygdala

ACC

Anterior cingulate cortex

rACC, sACC or pgACC (respectively)

Rostral or subgenual or pregenual ACC

INS

Insular cortex

MCC

Midcingulate cortex

NAcc

Nucleus accumbens

OFC

Orbitofrontal cortex

PAG

Periaqueductal gray

PFC

Prefrontal cortex

DLPFC

Dorsolateral prefrontal cortex

vmPFC

Ventral medial prefrontal cortex

SI

Primary somatosensory cortex

RVM

Rostral ventral medulla

Th

Thalamus

VTA

Ventral tegmental area

Notes

Acknowledgements

This project was supported by University of Maryland Baltimore (LC), the National Institute of Dental and Craniofacial Research (NIDCR; R01DE025946-01, LC) and International Association for Study of Pain (Early Research Grant [LC]).

References

  1. 1.
    Harper D. Anticipation. Online Etymology Dictionary.Google Scholar
  2. 2.
    Colagiuri B, Schenk LA, Kessler MD, Dorsey SG, Colloca L. The placebo effect: from concepts to genes. Neuroscience. 2015;307:171–90. doi: 10.1016/j.neuroscience.2015.08.017.
  3. 3.
    Colloca L, Klinger R, Flor H, Bingel U. Placebo analgesia: psychological and neurobiological mechanisms. Pain. 2013;154(4):511–4. doi: 10.1016/j.pain.2013.02.002.
  4. 4.
    Colloca L, Grillon C. Understanding placebo and nocebo responses for pain management. Curr Pain Headache Rep. 2014;18(6):419. doi: 10.1007/s11916-014-0419-2.
  5. 5.
    Colloca L, Sigaudo M, Benedetti F. The role of learning in nocebo and placebo effects. Pain. 2008;136(1–2):211–8. doi: 10.1016/j.pain.2008.02.006.
  6. 6.
    Colloca L, Benedetti F. How prior experience shapes placebo analgesia. Pain. 2006;124(1–2):126–33. doi: 10.1016/j.pain.2006.04.005.
  7. 7.
    Colloca L, Benedetti F. Placebo analgesia induced by social observational learning. Pain. 2009;144(1–2):28–34. doi: 10.1016/j.pain.2009.01.033.
  8. 8.
    Medoff ZM, Colloca L. Placebo analgesia: understanding the mechanisms. Pain Manag. 2015;5(2):89–96. doi: 10.2217/pmt.15.3.
  9. 9.
    Ploner M, Lee MC, Wiech K, Bingel U, Tracey I. Prestimulus functional connectivity determines pain perception in humans. Proc Natl Acad Sci U S A. 2010;107(1):355–60. doi: 10.1073/pnas.0906186106.
  10. 10.
    Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14(7):502–11. doi: 10.1038/nrn3516.
  11. 11.
    Ploghaus A, Becerra L, Borras C, Borsook D. Neural circuitry underlying pain modulation: expectation, hypnosis, placebo. Trends Cogn Sci. 2003;7(5):197–200.Google Scholar
  12. 12.
    Price DD, Milling LS, Kirsch I, Duff A, Montgomery GH, Nicholls SS. An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain. 1999;83(2):147–56.Google Scholar
  13. 13.
    Staub E, Tursky B, Schwartz GE. Self-control and predictability: their effects on reactions to aversive stimulation. J Pers Soc Psychol. 1971;18(2):157–62.Google Scholar
  14. 14.
    Palermo S, Benedetti F, Costa T, Amanzio M. Pain anticipation: an activation likelihood estimation meta-analysis of brain imaging studies. Hum Brain Mapp. 2015;36 (5):1648–61. doi: 10.1002/hbm.22727.
  15. 15.
    Barlow DH, Chorpita BF, Turovsky J. Fear, panic, anxiety, and disorders of emotion. Nebr Symp Motiv. 1996;43:251–328.Google Scholar
  16. 16.
    Ploghaus A, Narain C, Beckmann CF, Clare S, Bantick S, Wise R, Matthews PM, Rawlins JN, Tracey I. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci. 2001;21(24):9896–903.Google Scholar
  17. 17.
    Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, Rawlins JN. Dissociating pain from its anticipation in the human brain. Science. 1999;284(5422):1979–81.Google Scholar
  18. 18.
    Chua P, Krams M, Toni I, Passingham R, Dolan R. A functional anatomy of anticipatory anxiety. Neuroimage. 1999;9(6 Pt 1):563–71. doi: 10.1006/nimg.1999.0407.
  19. 19.
    Fairhurst M, Wiech K, Dunckley P, Tracey I. Anticipatory brainstem activity predicts neural processing of pain in humans. Pain. 2007;128(1–2):101-10. doi: 10.1016/j.pain.2006.09.001.
  20. 20.
    Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303(5661):1162–7. doi: 10.1126/science.1093065.
  21. 21.
    Ungless MA, Magill PJ, Bolam JP. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science. 2004;303(5666):2040–42. doi: 10.1126/science.1093360.
  22. 22.
    Dunckley P, Wise RG, Fairhurst M, Hobden P, Aziz Q, Chang L, Tracey I. A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J Neurosci. 2005;25(32):7333–41. doi: 10.1523/JNEUROSCI.1100-05.2005.
  23. 23.
    Hsieh JC, Stone-Elander S, Ingvar M. Anticipatory coping of pain expressed in the human anterior cingulate cortex: a positron emission tomography study. Neurosci Lett. 1999;262(1):61–4.Google Scholar
  24. 24.
    Simpson JR, Jr., Drevets WC, Snyder AZ, Gusnard DA, Raichle ME. Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Proc Natl Acad Sci U S A. 2001;98(2):688–93. doi: 10.1073/pnas.98.2.688.
  25. 25.
    Ongur D, An X, Price JL. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol. 1998;401(4):480–505.Google Scholar
  26. 26.
    Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, Nichelli P. Does anticipation of pain affect cortical nociceptive systems? J Neurosci. 2002;22(8):3206–14. doi:20026310.Google Scholar
  27. 27.
    Koyama T, McHaffie JG, Laurienti PJ, Coghill RC. The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci U S A. 2005;102(36):12950–55. doi: 10.1073/pnas.0408576102.
  28. 28.
    Smith AP, Henson RN, Dolan RJ, Rugg MD. fMRI correlates of the episodic retrieval of emotional contexts. Neuroimage. 2004;22(2):868–78. doi: 10.1016/j.neuroimage.2004.01.049.
  29. 29.
    Anderson AK, Phelps EA. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature. 2001;411(6835):305–9. doi: 10.1038/35077083.
  30. 30.
    Naliboff BD, Berman S, Suyenobu B, Labus JS, Chang L, Stains J, Mandelkern MA, Mayer EA (2006) Longitudinal change in perceptual and brain activation response to visceral stimuli in irritable bowel syndrome patients. Gastroenterology. 131 (2):352–365. doi: 10.1053/j.gastro.2006.05.014.
  31. 31.
    Burgmer M, Petzke F, Giesecke T, Gaubitz M, Heuft G, Pfleiderer B. Cerebral activation and catastrophizing during pain anticipation in patients with fibromyalgia. Psychosom Med. 2011;73(9):751–9. doi: 10.1097/PSY.0b013e318236588a.
  32. 32.
    Lorenz J, Minoshima S, Casey KL. Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain. 2003;126(Pt 5):1079–91.Google Scholar
  33. 33.
    Burgmer M, Pfleiderer B, Maihofner C, Gaubitz M, Wessolleck E, Heuft G, Pogatzki-Zahn E. Cerebral mechanisms of experimental hyperalgesia in fibromyalgia. Eur J Pain. 2012;16(5):636–47. doi: 10.1002/j.1532-2149.2011.00058.x.
  34. 34.
    Benedetti F, Amanzio M. Mechanisms of the placebo response. Pulm Pharmacol Ther. 2013;26 (5):520–3. doi: 10.1016/j.pupt.2013.01.006.
  35. 35.
    Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia—imaging a shared neuronal network. Science. 2002;295(5560):1737–40. doi: 10.1126/science.1067176.
  36. 36.
    Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, Nichols TE, Stohler CS. Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J Neurosci. 2005;25(34):7754–62. doi: 10.1523/JNEUROSCI.0439-05.2005.
  37. 37.
    Wager TD, Scott DJ, Zubieta JK. Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A. 2007;104(26):11056–61. doi: 10.1073/pnas.0702413104.
  38. 38.
    Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch Gen Psychiatry. 2008;65(2):220–31. doi: 10.1001/archgenpsychiatry.2007.34.
  39. 39.
    Levine JD, Gordon NC, Fields HL. The mechanism of placebo analgesia. Lancet. 1978;2(8091):654–7.Google Scholar
  40. 40.
    Amanzio M, Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J Neurosci. 1999;19(1):484–94.Google Scholar
  41. 41.
    Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, Buchel C. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron. 2009;63(4):533–43. doi: 10.1016/j.neuron.2009.07.014.
  42. 42.
    Zubieta JK, Yau WY, Scott DJ, Stohler CS (2006) Belief or Need? Accounting for individual variations in the neurochemistry of the placebo effect. Brain Behav Immun. 20(1):15–26. doi: 10.1016/j.bbi.2005.08.006.
  43. 43.
    Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain. 2006;120(1–2):8-15. doi: 10.1016/j.pain.2005.08.027.
  44. 44.
    Fields H. State-dependent opioid control of pain. Nat Rev Neurosci. 2004;5(7):565–75. doi: 10.1038/nrn1431.
  45. 45.
    Krummenacher P, Candia V, Folkers G, Schedlowski M, Schonbachler G. Prefrontal cortex modulates placebo analgesia. Pain. 2010;148(3):368–74. doi: 10.1016/j.pain.2009.09.033.
  46. 46.
    de la Fuente-Fernandez R, Schulzer M, Stoessl AJ. The placebo effect in neurological disorders. Lancet Neurol. 2002;1(2):85–91.Google Scholar
  47. 47.
    Garris PA, Kilpatrick M, Bunin MA, Michael D, Walker QD, Wightman RM. Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature. 1999;398(6722):67–9. doi: 10.1038/18019.
  48. 48.
    Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003;299(5614):1898–902. doi: 10.1126/science.1077349.
  49. 49.
    de la Fuente-Fernandez R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ. Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science. 2001;293(5532):1164–6. doi: 10.1126/science.1060937.
  50. 50.
    de la Fuente-Fernandez R, Stoessl AJ. The placebo effect in Parkinson’s disease. Trends Neurosci. 2002;25(6):302–306.Google Scholar
  51. 51.
    Strafella AP, Ko JH, Monchi O. Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. Neuroimage. 2006;31(4):1666–72. doi: 10.1016/j.neuroimage.2006.02.005.
  52. 52.
    Benedetti F, Colloca L, Torre E, Lanotte M, Melcarne A, Pesare M, Bergamasco B, Lopiano L. Placebo-responsive Parkinson patients show decreased activity in single neurons of subthalamic nucleus. Nat Neurosci. 2004;7(6):587–8. doi: 10.1038/nn1250.
  53. 53.
    Benedetti F, Amanzio M, Thoen W. Disruption of opioid-induced placebo responses by activation of cholecystokinin type-2 receptors. Psychopharmacology (Berl). 2011;213(4):791–7. doi: 10.1007/s00213-010-2037-y.
  54. 54.
    Benedetti F. Mechanisms of placebo and placebo-related effects across diseases and treatments. Annu Rev Pharmacol Toxicol. 2008;48:33–60. doi: 10.1146/annurev.pharmtox.48.113006.094711.
  55. 55.
    Enck P, Benedetti F, Schedlowski M. New insights into the placebo and nocebo responses. Neuron. 2008;59(2):195–206. doi: 10.1016/j.neuron.2008.06.030.
  56. 56.
    Benedetti F, Amanzio M, Maggi G. Potentiation of placebo analgesia by proglumide. Lancet. 1995;346(8984):1231.Google Scholar
  57. 57.
    Benedetti F, Amanzio M. The neurobiology of placebo analgesia: from endogenous opioids to cholecystokinin. Prog Neurobiol. 1997;52(2):109–25.Google Scholar
  58. 58.
    Benedetti F. Placebo analgesia. Neurol Sci. 2006;27(Suppl 2):S100–2. doi: 10.1007/s10072-006-0580-4.
  59. 59.
    Price DD, Craggs J, Verne GN, Perlstein WM, Robinson ME. Placebo analgesia is accompanied by large reductions in pain-related brain activity in irritable bowel syndrome patients. Pain. 2007;127(1–2):63–72. doi: 10.1016/j.pain.2006.08.001.
  60. 60.
    Atlas LY, Wager TD. A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions. Handb Exp Pharmacol. 2014;225:37–69. doi: 10.1007/978-3-662-44519-8_3.
  61. 61.
    Wager TD, Fields, H. Placebo analgesia. In: Textbook of pain. 2013. p 362–73.Google Scholar
  62. 62.
    Kong J, Gollub RL, Rosman IS, Webb JM, Vangel MG, Kirsch I, Kaptchuk TJ. Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J Neurosci. 2006;26(2):381–8. doi: 10.1523/JNEUROSCI.3556-05.2006.
  63. 63.
    Amanzio M, Benedetti F, Porro CA, Palermo S, Cauda F. Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain. Hum Brain Mapp. 2013;34(3):738–52. doi: 10.1002/hbm.21471.
  64. 64.
    Kalisch R, Wiech K, Critchley HD, Seymour B, O’Doherty JP, Oakley DA, Allen P, Dolan RJ. Anxiety reduction through detachment: subjective, physiological, and neural effects. J Cogn Neurosci. 2005;17(6):874–83. doi: 10.1162/0898929054021184.
  65. 65.
    Vase L, Robinson ME, Verne GN, Price DD. Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain. 2005;115(3):338–47. doi: 10.1016/j.pain.2005.03.014.
  66. 66.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 3(8):655–66. doi: 10.1038/nrn894.
  67. 67.
    Craig AD. A new view of pain as a homeostatic emotion. Trends Neurosci. 2003;26(6):303–7.Google Scholar
  68. 68.
    Craig AD, Chen K, Bandy D, Reiman EM. Thermosensory activation of insular cortex. Nat Neurosci. 2000;3(2):184–90. doi: 10.1038/72131.
  69. 69.
    Watson A, El-Deredy W, Iannetti GD, Lloyd D, Tracey I, Vogt BA, Nadeau V, Jones AK. Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain. 2009;145(1–2):24–30. doi: 10.1016/j.pain.2009.04.003.
  70. 70.
    Lui F, Colloca L, Duzzi D, Anchisi D, Benedetti F, Porro CA. Neural bases of conditioned placebo analgesia. Pain. 2010;151(3):816–24. doi: 10.1016/j.pain.2010.09.021.
  71. 71.
    Craggs JG, Price DD, Verne GN, Perlstein WM, Robinson MM. Functional brain interactions that serve cognitive-affective processing during pain and placebo analgesia. Neuroimage. 2007;38(4):720–9. doi: 10.1016/j.neuroimage.2007.07.057.
  72. 72.
    Egorova N, Yu R, Kaur N, Vangel M, Gollub RL, Dougherty DD, Kong J, Camprodon JA. Neuromodulation of conditioned placebo/nocebo in heat pain: anodal vs cathodal transcranial direct current stimulation to the right dorsolateral prefrontal cortex. Pain. 2015;156(7):1342–7. doi: 10.1097/j.pain.0000000000000163.
  73. 73.
    Huber A, Lui F, Porro CA. Hypnotic susceptibility modulates brain activity related to experimental placebo analgesia. Pain. 2013;154(9):1509–18. doi: 10.1016/j.pain.2013.03.031.
  74. 74.
    Eippert F, Finsterbusch J, Bingel U, Buchel C. Direct evidence for spinal cord involvement in placebo analgesia. Science. 2009;326(5951):404. doi: 10.1126/science.1180142.
  75. 75.
    Colloca L, Petrovic P, Wager TD, Ingvar M, Benedetti F. How the number of learning trials affects placebo and nocebo responses. Pain. 2010;151(2):430–9. doi: 10.1016/j.pain.2010.08.007.
  76. 76.
    Jensen K, Kirsch I, Odmalm S, Kaptchuk TJ, Ingvar M. Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness. Proc Natl Acad Sci U S A. 2015;112(25):7863–7. doi: 10.1073/pnas.1504567112.
  77. 77.
    Colagiuri B, Quinn VF, Colloca L. Nocebo hyperalgesia, partial reinforcement, and extinction. J Pain. 2015. doi: 10.1016/j.jpain.2015.06.012.
  78. 78.
    Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, Fukuyama H, Konishi J, Shibasaki H. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci. 2000;20(19):7438–45.Google Scholar
  79. 79.
    Keltner JR, Furst A, Fan C, Redfern R, Inglis B, Fields HL. Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J Neurosci. 2006;26(16):4437–43. doi: 10.1523/JNEUROSCI.4463-05.2006.
  80. 80.
    Bingel U, Wanigasekera V, Wiech K, Ni Mhuircheartaigh R, Lee MC, Ploner M, Tracey I. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci Transl Med. 2011;3(70):70ra14. doi: 10.1126/scitranslmed.3001244.
  81. 81.
    Colloca L, Finniss D. Nocebo effects, patient-clinician communication, and therapeutic outcomes. JAMA. 2012;307(6):567–8. doi: 10.1001/jama.2012.115.
  82. 82.
    Jensen KB, Petrovic P, Kerr CE, Kirsch I, Raicek J, Cheetham A, Spaeth R, Cook A, Gollub RL, Kong J, Kaptchuk TJ. Sharing pain and relief: neural correlates of physicians during treatment of patients. Mol Psychiatry. 2014;19(3):392–8. doi: 10.1038/mp.2012.195.
  83. 83.
    Geuter S, Buchel C. Facilitation of pain in the human spinal cord by nocebo treatment. J Neurosci. 2013;33(34):13784–90. doi: 10.1523/JNEUROSCI.2191-13.2013.
  84. 84.
    Wager TD, Atlas LY, Leotti LA, Rilling JK. Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. J Neurosci. 2011;31(2):439–52. doi: 10.1523/JNEUROSCI.3420-10.2011.
  85. 85.
    Hashmi JA, Baria AT, Baliki MN, Huang L, Schnitzer TJ, Apkarian AV. Brain networks predicting placebo analgesia in a clinical trial for chronic back pain. Pain. 2012;153(12):2393–402. doi: 10.1016/j.pain.2012.08.008.
  86. 86.
    Hashmi JA, Kong J, Spaeth R, Khan S, Kaptchuk TJ, Gollub RL. Functional network architecture predicts psychologically mediated analgesia related to treatment in chronic knee pain patients. J Neurosci. 2014;34(11):3924–36. doi: 10.1523/JNEUROSCI.3155-13.2014.
  87. 87.
    Stein N, Sprenger C, Scholz J, Wiech K, Bingel U. White matter integrity of the descending pain modulatory system is associated with interindividual differences in placebo analgesia. Pain. 2012;153(11):2210–7. doi: 10.1016/j.pain.2012.07.010.
  88. 88.
    Schweinhardt P, Seminowicz DA, Jaeger E, Duncan GH, Bushnell MC. The anatomy of the mesolimbic reward system: a link between personality and the placebo analgesic response. J Neurosci. 2009;29(15):4882–7. doi: 10.1523/JNEUROSCI.5634-08.2009.
  89. 89.
    Ross S, Krugman AD, Lyerly SB, Clyde ADJ. Drugs and placebos: a model design. Psychol Rep. 1962;10(2):383–92.Google Scholar
  90. 90.
    Kong J, Kaptchuk TJ, Polich G, Kirsch I, Vangel, Gollub R. Expectancy and treatment interactions: a dissociation between acupuncture analgesia and expectancy evoked placebo analgesia. Neuroimage. 2009;45(3): 940–9. doi: 10.1016/j.neuroimage.2008.12.025.
  91. 91.
    Atlas LY, Wager TD. How expectations shape pain. Neurosci Letters. 2012;520(2):140–8. doi: 10.1016/j.neulet.2012.03.03.
  92. 92.
    Schenk LA, Sprenger C, Geuter S, Büchel C. Expectation requires treatment to boost pain relief: an fMRI study. Pain. 2014;155(1):150–7. doi: 10.1016/j.pain.2013.09.024.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dominic E. Nathan
    • 1
  • Taylor M. Ludman
    • 2
    • 3
  • Luana Colloca
    • 2
    • 3
    • 4
  1. 1.Uniformed Services University of the Health Sciences, School of NursingBethesdaUSA
  2. 2.Pain and Translational Symptom ScienceUniversity of Maryland Baltimore, School of NursingBaltimoreUSA
  3. 3.UM Center to Advance Chronic Pain ResearchBaltimoreUSA
  4. 4.Department of AnesthesiologyUniversity of Maryland Baltimore, School of MedicineBaltimoreUSA

Personalised recommendations