Magnetic Resonance Imaging

  • Michele Anzidei
  • Fabrizio Boni
  • Vincenzo Noce
  • Daniele Guerrieri
  • Beatrice Sacconi
  • Carlo Catalano


Magnetic Resonance (MR) plays a leading role in pain imaging, offering optimal anatomic imaging and contributing functional and chemical studies of Central and Peripheral Nervous System. These tools have increased the comprehension of different chronic painful syndromes and the evaluation of treatment response to pharmacological or other therapeutic interventions. Furthermore, several neuro-MRI techniques, including functional magnetic resonance imaging (fMRI), MR spectroscopy (MRS) and diffusion-weighted imaging (DWI), have been demonstrated to depict nervous system pathologies associated with pain. Also, body MRI may be useful to depict several causes and manifestations of pain, local or diffuse, acute or chronic, covering the entire spectrum of disorders, supporting a multidisciplinary diagnosis process. In this section, after a brief discussion of MR basics, the main imaging procedures and their application in assessing the main painful syndromes will be deeply explored, with support of pictorial essays for each technique.


Pain MRI Brain Spinal cord Nerves Functional imaging 


  1. 1.
    Merskey H, Bogduk N. Classification of chronic pain. IASP Task Force on Taxonomy. 2nd ed. Seattle: IASP Press; 1994.Google Scholar
  2. 2.
    Tracey I. Imaging pain. Br J Anaesth. 2008;101(1):32–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Albe-Fessard D, Berkley KJ, Kruger L, Ralston HJ, III, Willis WD, Jr. Diencephalic mechanisms of pain sensation. Brain Res. 1985;356:217–96. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463–84.Google Scholar
  4. 4.
    Harris RE, Sundgren PC, Pang Y, et al. Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthritis Rheum. 2008;58(3):903–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Khan HS, Stroman PW. Inter-individual differences in pain processing investigated by functional magnetic resonance imaging of the brainstem and spinal cord. Neuroscience. 2015;29(307):231–41.CrossRefGoogle Scholar
  6. 6.
    Jongen JL, Hans G, Benzon HT, et al. Neuropathic pain and pharmacological treatment. Pain Pract. 2014;14(3):283–95.CrossRefPubMedGoogle Scholar
  7. 7.
    Narváez JA, Narváez J, De Lama E et al. MR imaging of early rheumatoid arthritis. Radiographics. 2010;30(1):143–63; discussion 163-5.Google Scholar
  8. 8.
    Brown MA, Semelka RC. MR imaging abbreviations, definitions, and descriptions: a review. Radiology. 1999;213:647–62.CrossRefPubMedGoogle Scholar
  9. 9.
    McRobbie DW, Moore EA, Graves MJ et al. MRI from picture to proton. 2nd ed. 2010. Cambridge: Cambridge University Press.Google Scholar
  10. 10.
    Mirowitz SA, Brown JJ, McKinstry RC, Li Tao. Principles and applications of echo-planar imaging: a review for the general radiologist. Mehdi Poustchi-Amin. RadioGraphics. 2001;21(3):767–79.Google Scholar
  11. 11.
    Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2003;17(5):509–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Bali MA, Metens T, Denolin V, et al. Tumoral and nontumoral pancreas: correlation between quantitative dynamic contrast-enhanced MR imaging and histopathologic parameters. Radiology. 2011;261(2):456–66.CrossRefPubMedGoogle Scholar
  13. 13.
    Bhooshan N, Giger ML, Jansen SA, et al. Cancerous breast lesions on dynamic contrast-enhanced mr images: computerized characterization for image-based prognostic markers. Radiology. 2010;254(3):680–90.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lacerda S, Law M. Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am. 2009;19(4):527–57.Google Scholar
  15. 15.
    Meaney JF, Ridgway JP, Chakraverty S, et al. Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. Radiology. 1999;211:59–67.CrossRefPubMedGoogle Scholar
  16. 16.
    Ho KY, Leiner T, de Haan MW, et al. Peripheral MR angiography. Eur Radiol. 1999;9:1765–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Shigematsu Y, Korogi Y, Hirai T, et al. 3D TOF turbo MR angiography for intracranial arteries: phantom and clinical studies. J Magn Reson Imaging. 1999;10:939–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Wedeen VJ, Meuli RA, Edelman RR, et al. Projective imaging of pulsatile flow with magnetic resonance. Science. 1985;230:946–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Walker MF, Souza SP, Domoulin CL. Quantitative flow measurement in phase contrast MR angiography. JCAT. 1988;12:304–13.Google Scholar
  20. 20.
    Hentsch A, Aschauer MA, Balzer JO et al. Gadobutrolenhanced moving-table magnetic resonance angiography in patients with peripheral vascular disease: a prospective, multicentre blinded comparison with digital subtraction angiography. Eur Radiol. 2003;13:2103–14.Google Scholar
  21. 21.
    Luccichenti G, Cademartiri F, Ugolotti U, et al. Magnetic resonance angiography with elliptical ordering and fluoroscopic triggering of the renal arteries. Radiol Med (Torino). 2003;105:42–7.Google Scholar
  22. 22.
    Wang Y, Chen CZ, Chabra SG, et al. Bolus arterial-venous transit in the lower extremity and venous contamination in bolus chase threedimensional magnetic resonance angiography. Invest Radiol. 2002;37:458–63.CrossRefPubMedGoogle Scholar
  23. 23.
    Willinek WA, Gieseke J, Conrad R, et al. Randomly segmented central k-space ordering in high-spatial-resolution contrast-enhanced MR angiography of the supraaortic arteries: initial experience. Radiology. 2002;225:583–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Korosec FR, Frayne R, Grist TM, et al. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med. 1996;36:345–51.CrossRefPubMedGoogle Scholar
  25. 25.
    Mori S, Barker PB. Diffusion magnetic resonance imaging: its principle and applications. Anat Rec. 1999;257:102–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Roberts TP, Rowley HA. Diffusion weighted magnetic resonance imaging in stroke. Eur J Radiol. 2003;45:185–94.CrossRefPubMedGoogle Scholar
  27. 27.
    Charles-Edwards EM, de Souza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging. 2006;6:135–43.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mori S, Zhang J. Principles of diffusion tensor primer imaging and its applications to basic neuroscience research. Neuron. 2006;51:527–39.Google Scholar
  29. 29.
    Hagmann BP, Jonasson L, Maeder P, et al. Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging. RadioGraphics. 2006;26:S205–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Basser PJ, Matiello J, Le Bihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–67.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tournier JD, Mori S, Leemans A. Diffusion tensor imaging and beyond. Magn Reson Med. 2011;65(6):1532–56.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pierpaoli C, Basser PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36:893–906.CrossRefPubMedGoogle Scholar
  34. 34.
    Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176:439–46.CrossRefPubMedGoogle Scholar
  35. 35.
    Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain. Magn Reson Med. 1999;42:526–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Tran T, Ross B, Lin A. Magnetic resonance spectroscopy in neuro-logical diagnosis. Neurol Clin. 2009;27(1):21–60.CrossRefPubMedGoogle Scholar
  37. 37.
    Grachev ID, Fredrickson BE, Apkarian AV. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain. 2000;89:7–18.CrossRefPubMedGoogle Scholar
  38. 38.
    Kupers R, Danielsen ER, Kehlet H, Christensen R, Thomsen C. Painful tonic heat stimulation induces GABA accumulation in the prefrontal cortex in man. Pain. 2009;142:89–93.CrossRefPubMedGoogle Scholar
  39. 39.
    Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52:612–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging. 2005;22:439–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A. 1936;22:210–6.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vincent K, Moore J, Kennedy S, Tracey I. Blood oxygenation level dependent functional magnetic resonance imaging: current and potential uses in obstetrics and gynaecology. BJOG. 2008;116(2):240–6.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Price RR, Allison J, Massoth RJ et al. Practical aspects of functional MRI (NMR Task Group #8). Med Phys. 2002;29(8).Google Scholar
  44. 44.
    McDannold N. Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: review of validation studies. Int J Hyperther. 2005;21(6):533–46. 27.Google Scholar
  45. 45.
    Graham SJ, Chen L, Leitch M, et al. Quantifying tissue damage due to focused ultrasound heating observed by MRI. Magn Reson Med. 1999;41:321–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Kuroda K, Oshio K, Chung AH, Hynynen K, Jolesz FA. Temperature mapping using the water proton chemical shift: a chemical shift selective phase mapping method. Magn Reson Med. 1997;38(5):845–51.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michele Anzidei
    • 1
  • Fabrizio Boni
    • 1
  • Vincenzo Noce
    • 1
  • Daniele Guerrieri
    • 1
  • Beatrice Sacconi
    • 1
  • Carlo Catalano
    • 1
  1. 1.Department of Radiological SciencesUniversity La SapienzaRomeItaly

Personalised recommendations