Advertisement

Physiopathology of Pain

Chapter

Abstract

The different brain imaging techniques that have emerged in the last decades have raised major advancement in our understanding of the neurophysiological mechanisms implicated in pain in both healthy subjects and in patients suffering from different pain conditions. The new brain imaging protocols are developed based on the background of previous surgical, behavioral, psychophysical, and electrophysiological researches on nociception and pain in animal, healthy subject, and patients. Having a good background of normal and pathophysiological pain neurophysiology is essential for the design of research protocols that will take advantage of new brain imaging technologies to better investigate the complex phenomenon of pain. Pain is a dynamic phenomenon that is the end result of several factors. The association between nociceptive activity and pain perception depends on several intrinsic and extrinsic influences. For the same nociceptive stimulus, pain perception and related brain activity will greatly differ between subjects. Studies support that environment and genetic factors are both playing important roles and seem to be modality specific. The effect of environment on genetics, epigenetics (lasting changes in gene expression without alteration of DNA sequence), is essential to be taken into account in pain. Nerve injuries or even psychological factors could change the central nervous system by affecting DNA methylation and produce a “genomic” memory of pain in the adult cortex. Pain perception is then the result of inherited physiological and psychological factors that are influenced by and hopefully guide the development of new therapeutic approaches for the patients that are suffering.

Keywords

Nociception Pain pathways Conditioned pain modulation Diffuse noxious inhibitory control Affective Sensory Central sensitization Pain modulation 

References

  1. 1.
    Baliki MN, Mansour AR, Baria AT, Apkarian AV. Functional reorganization of the default mode network across chronic pain conditions. PLoS ONE. 2014;9(9):e106133. doi: 10.1371/journal.pone.0106133.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Besson JM, Chaouch A. Peripheral and spinal mechanisms of nociception. Physiol Rev. 1987;67:67–186.PubMedGoogle Scholar
  3. 3.
    Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–9. doi: 10.1038/361031a0.CrossRefPubMedGoogle Scholar
  4. 4.
    Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol. 2014;817:373–403. doi: 10.1007/978-1-4939-0897-4_17.CrossRefPubMedGoogle Scholar
  5. 5.
    Brewer JA, Worhunsky PD, Gray JR, Tang YY, Weber J, Kober H. Meditation experience is associated with differences in default mode network activity and connectivity. Proc Natl Acad Sci U S A. 2011;108(50):20254–9. doi: 10.1073/pnas.1112029108.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Buchheit T, Van de Ven T, Shaw A. Epigenetics and the transition from acute to chronic pain. Pain Med. 2012;13(11):1474–90. doi: 10.1111/j.1526-4637.2012.01488.x.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. Pain perception: is there a role for primary somatosensory cortex? Proc Natl Acad Sci U S A. 1999;96(14):7705–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Byers MR, Bonica JJ, Loeser JD. Peripheral pain mechanisms and nociceptor plasticity. Management of pain. New York: Lippincott Williams & Wilkins; 2001. p. 26–72.Google Scholar
  9. 9.
    Casey KL, Bushnell MC. The imaging of pain: background and rational. Pain imaging. Progress in pain research and management. Seattle: IASP Press; 2000. p. 1–29.Google Scholar
  10. 10.
    Chang L, Berman S, Mayer EA, Suyenobu B, Derbyshire S, Naliboff B, Vogt B, Fitzgerald L, Mandelkern MA. Brain responses to visceral and somatic stimuli in patients with irritable bowel syndrome with and without fibromyalgia. Am J Gastroenterol. 2003;98(6):1354–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Coghill RC, McHaffie JG, Yen YF. Neural correlates of interindividual differences in the subjective experience of pain. Proc Natl Acad Sci U S A. 2003;100(14):8538–42.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, Duncan GH. Distributed processing of pain and vibration by the human brain. J Neurosci. 1994;14(7):4095–108.PubMedGoogle Scholar
  13. 13.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3(8):655–66.CrossRefPubMedGoogle Scholar
  14. 14.
    Craig AD. A new view of pain as a homeostatic emotion. Trends Neurosci. 2003;26(6):303–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Craig AD, Bushnell MC. The thermal grill illusion: unmasking the burn of cold pain. Science. 1994;265 (5169): 252–55.Google Scholar
  16. 16.
    Craig AD, Chen K, Bandy D, Reiman EM. Thermosensory activation of insular cortex. Nat Neurosci. 2000;3(2):184–90.CrossRefPubMedGoogle Scholar
  17. 17.
    Damasio A, Carvalho GB. The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci. 2013;14(2):143–52. doi: 10.1038/nrn3403.CrossRefPubMedGoogle Scholar
  18. 18.
    Davis KD, Moayedi M. Central mechanisms of pain revealed through functional and structural MRI. J Neuroimmune Pharmacol (The Official Journal of the Society on NeuroImmune Pharmacology). 2013;8(3):518–34. doi: 10.1007/s11481-012-9386-8.CrossRefGoogle Scholar
  19. 19.
    De Broucker T, Cesaro P, Willer JC, Le Bars D. Diffuse noxious inhibitory controls in man. Involvement of the spinoreticular tract. Brain. 1990;113(Pt 4):1223–34.Google Scholar
  20. 20.
    De Leo JA, Sorkin LS, Watkins LR, International Association for the Study of Pain. Immune and glial regulation of pain. Seattle: IASP Press; 2007.Google Scholar
  21. 21.
    Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci. 2015;38(4):237–46. doi: 10.1016/j.tins.2015.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Descartes R. Traité de l’homme. In: Descartes Oeuvres et lettres. Bibliothèque de la Pléiade, Gallimard; 1644. p. 803–873.Google Scholar
  23. 23.
    Eide PK. Wind-up and the NMDA receptor complex from a clinical perspective. Eur J Pain. 2000;4(1):5–15.CrossRefPubMedGoogle Scholar
  24. 24.
    Ferrini F, Trang T, Mattioli TA, Laffray S, Del’Guidice T, Lorenzo LE, Castonguay A, Doyon N, Zhang W, Godin AG, Mohr D, Beggs S, Vandal K, Beaulieu JM, Cahill CM, Salter MW, De Koninck Y. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis. Nat Neurosci. 2013;16(2):183–92. doi: 10.1038/nn.3295.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fields HL, Basbaum A, Heinrich RL. Central nervous system mechanisms of pain modulation. In: McMahon SB, Koltzenburg M, editors. Wall and Melzack’s Texbook of pain, vol. 5. Philadelphia: Elsevier Limited; 2006. p. 125–42.CrossRefGoogle Scholar
  26. 26.
    Fields HL. Pain. New York: McGraw-Hill Book Company; 1987.Google Scholar
  27. 27.
    Fox MD, Snyder AZ, Vincent JL, Raichle ME. Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron. 2007;56(1):171–84. doi: 10.1016/j.neuron.2007.08.023.CrossRefPubMedGoogle Scholar
  28. 28.
    Frey MV. Treatise on the sensory functions of the human skin. In: Handwerker HO, editor. Classical German contributions to pain research. Allemagne: Gesellschaft zum Studium des Schmerzes für Deutschland; 1897. p. 69–132.Google Scholar
  29. 29.
    Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: a review. Pain. 2013;. doi: 10.1016/j.pain.2013.09.001.Google Scholar
  30. 30.
    Goldscheider A. The specific energy of the sensory nerves of the skin. In: Handwerker HO, editor. Classical German contributions to pain research. Allemagne: Gesellschaft zum Studium des Schmerzes für Deutschland; 1884. p. 47–69.Google Scholar
  31. 31.
    Gougeon V, Gaumond I, Goffaux P, Potvin S, Marchand S. Triggering descending pain inhibition by observing ourselves or a loved-one in pain. Clin J Pain. 2016;32(3):238–45. doi: 10.1097/AJP.0000000000000244.CrossRefPubMedGoogle Scholar
  32. 32.
    Guilbaud G, Besson JM, Brasseur C. Physiologie du circuit de la douleur. In: Douleurs. Paris: Maloine; 1997.Google Scholar
  33. 33.
    Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2(10):685–94. doi: 10.1038/35094500.CrossRefPubMedGoogle Scholar
  34. 34.
    Hardy JD, Wolff GH, Goodell H. Pain sensation and reactions. Baltimore: Williams & Wilkins; 1952.Google Scholar
  35. 35.
    Head H, Holmes G. Sensory disturbances from sensory cerebral lesions. Brain. 1911;34:102–254.CrossRefGoogle Scholar
  36. 36.
    Holmes G. Disorders of sensation produced by cortical lesions. Brain. 1927;50:413–27.CrossRefGoogle Scholar
  37. 37.
    Iannetti GD, Mouraux A. From the neuromatrix to the pain matrix (and back). Experimental Brain Res. 2010;205(1):1–12. doi: 10.1007/s00221-010-2340-1.CrossRefGoogle Scholar
  38. 38.
    Jackson PL, Meltzoff AN, Decety J. How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage. 2005;24(3):771–9. doi: 10.1016/j.neuroimage.2004.09.006.CrossRefPubMedGoogle Scholar
  39. 39.
    James W. Discussion: the physical basis of emotion. Psychol Rev. 1894;1:13. doi: 10.1037/h0065078.Google Scholar
  40. 40.
    Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Decosterd I. Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. Neuron Glia Biol. 2006;2(4):259–69. doi: 10.1017/S1740925X07000403.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26(12):696–705. doi: 10.1016/j.tins.2003.09.017.CrossRefPubMedGoogle Scholar
  42. 42.
    Jones MP, Dilley JB, Drossman D, Crowell MD. Brain-gut connections in functional GI disorders: anatomic and physiologic relationships. Neurogastroenterol Motil. 2006;18(2):91–103.CrossRefPubMedGoogle Scholar
  43. 43.
    Kenshalo DR, Jr., Douglass DK, Bromm B, Desmedt JE. The role of the cerebral cortex in the experience of pain. In: Bromm B, Desmedt JE (eds) Pain and the brain: from nociception to cognition. Advances in pain research and therapy. New York: Raven Press; 1995. p. 21–34.Google Scholar
  44. 44.
    Khoshnejad M, Piche M, Saleh S, Duncan G, Rainville P. Serial processing in primary and secondary somatosensory cortex: a DCM analysis of human fMRI data in response to innocuous and noxious electrical stimulation. Neurosci Lett. 2014;577:83–8. doi: 10.1016/j.neulet.2014.06.013.CrossRefPubMedGoogle Scholar
  45. 45.
    Knowles CH, Aziz Q. Basic and clinical aspects of gastrointestinal pain. Pain 2009;141(3):191–209. doi: 10.1016/j.pain.2008.12.011 S0304-3959(08)00731-8 [pii].
  46. 46.
    Kucyi A, Salomons TV, Davis KD. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks. Proc Natl Acad Sci U S A. 2013;110(46):18692–7. doi: 10.1073/pnas.1312902110.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Le Bars D. The whole body receptive field of dorsal horn multireceptive neurones. Brain Res Brain Res Rev. 2002;40(1–3):29–44.Google Scholar
  48. 48.
    Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). 1. Effects on dorsal horn convergent neurones in the rat. Pain. 1979;6(3):283–304.Google Scholar
  49. 49.
    Le Bars D, Dickenson AH, Besson JM. Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain. 1979;6(3):305–27.Google Scholar
  50. 50.
    Lee MC, Mouraux A, Iannetti GD. Characterizing the cortical activity through which pain emerges from nociception. J Neurosci. 2009;29(24):7909–16. doi: 10.1523/JNEUROSCI.0014-09.2009.CrossRefPubMedGoogle Scholar
  51. 51.
    Lee MC, Tracey I. Imaging pain: a potent means for investigating pain mechanisms in patients. Br J Anaesth. 2013;111(1):64–72. doi: 10.1093/bja/aet174.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Leknes S, Berna C, Lee MC, Snyder GD, Biele G, Tracey I. The importance of context: when relative relief renders pain pleasant. Pain. 2013;154(3):402–10. doi: 10.1016/j.pain.2012.11.018.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, Hill E, Hsu S, Izquierdo-Garcia D, Ji RR, Riley M, Wasan AD, Zurcher NR, Albrecht DS, Vangel MG, Rosen BR, Napadow V, Hooker JM. Evidence for brain glial activation in chronic pain patients. Brain. 2015;138(Pt 3):604–15. doi: 10.1093/brain/awu377.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Marchand S. Applied neurophysiology. In: Beaulieu P, Lussier D, Porreca F, Dickenson AH, editors. Pharmacology of pain. Seattle: IASP Press; 2010. p. 3–26.Google Scholar
  55. 55.
    Melzack R. Phantom limbs and the concept of a neuromatrix. Trends in Neuroscience. 1990;13:88–92.CrossRefGoogle Scholar
  56. 56.
    Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Millan MJ. The induction of pain: an integrative review. ProgNeurobiol. 1999;57(1):1–164.Google Scholar
  58. 58.
    Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355–474.CrossRefPubMedGoogle Scholar
  59. 59.
    Müller J. On the sense of feeling. In: Handwerker HO, editor. Classical German contributions to pain research. Allemagne: Gesellschaft zum Studium des Schmerzes für Deutschland; 1837. p. 27–47.Google Scholar
  60. 60.
    Nielsen CS, Stubhaug A, Price DD, Vassend O, Czajkowski N, Harris JR. Individual differences in pain sensitivity: genetic and environmental contributions. Pain. 2008;136(1–2):21–9. doi: 10.1016/j.pain.2007.06.008.CrossRefPubMedGoogle Scholar
  61. 61.
    Niesters M, Proto PL, Aarts L, Sarton EY, Drewes AM, Dahan A. Tapentadol potentiates descending pain inhibition in chronic pain patients with diabetic polyneuropathy. Br J Anaesth. 2014;113(1):148–56. doi: 10.1093/bja/aeu056.CrossRefPubMedGoogle Scholar
  62. 62.
    Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell MC. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci. 2002;5(9):900–4.CrossRefPubMedGoogle Scholar
  63. 63.
    Olausson H, Marchand S, Bittar RG, Bernier J, Ptito A, Bushnell MC. Central pain in a hemispherectomized patient. Eur J Pain. 2001;5(2):209–17. doi: 10.1053/eujp.2001.0233.CrossRefPubMedGoogle Scholar
  64. 64.
    Olesen SS, Graversen C, Bouwense SA, van Goor H, Wilder-Smith OH, Drewes AM. Quantitative sensory testing predicts pregabalin efficacy in painful chronic pancreatitis. PLoS ONE. 2013;8(3):e57963. doi: 10.1371/journal.pone.0057963.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Pillay PK, Hassenbusch SJ. Bilateral MRI-guided stereotactic cingulotomy for intractable pain. Stereotact Funct Neurosurg. 1992;59:33–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Ploner M, Gross J, Timmermann L, Schnitzler A. Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci U S A. 2002;99(19):12444–8. doi: 10.1073/pnas.182272899.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Price DD. Psychological and neural mechanics of pain. Seattle, WA: IASP Press; 1999.Google Scholar
  68. 68.
    Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science. 2000;288(5472):1769–72.CrossRefPubMedGoogle Scholar
  69. 69.
    Reynolds DV. Surgery in the rat during electrical analgesia. Science. 1969;164(878):444–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Roy M, Shohamy D, Daw N, Jepma M, Wimmer GE, Wager TD. Representation of aversive prediction errors in the human periaqueductal gray. Nat Neurosci. 2014;17(11):1607–12. doi: 10.1038/nn.3832.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sandkuhler J. Understanding LTP in pain pathways. Mol Pain 2007;3:9. doi: 10.1186/1744-8069-3-9 1744-8069-3-9 [pii].
  72. 72.
    Sherrington CS. The integrative action of the nervous system. Scribner’s. 1906.Google Scholar
  73. 73.
    Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–62.CrossRefPubMedGoogle Scholar
  74. 74.
    Stander S, Steinhoff M, Schmelz M, Weisshaar E, Metze D, Luger T. Neurophysiology of pruritus: cutaneous elicitation of itch. Arch Dermatol. 2003;139(11):1463–70.CrossRefPubMedGoogle Scholar
  75. 75.
    Suter MR, Wen YR, Decosterd I, Ji RR. Do glial cells control pain? Neuron Glia Biol. 2007;3(3):255–68. doi: 10.1017/S1740925X08000100.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Swiergiel AH, Juszczak GR, Stankiewicz AM. Genetic and epigenetic mechanisms linking pain and psychiatric disorders. Modern trends in pharmacopsychiatry. 2015;30:120–37. doi: 10.1159/000435937.CrossRefPubMedGoogle Scholar
  77. 77.
    Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH. Multiple representations of pain in human cerebral cortex. Science. 1991;251(1999):1355–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Terman GW, Bonica JJ, Loeser JD. Spinal Mechanisms and their modulation. In: Loeser JD, Butler SH, Chapman CR, Turk DC, editors. Management of pain, vol. 3. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 73–152.Google Scholar
  79. 79.
    Tillisch K. The effects of gut microbiota on CNS function in humans. Gut Microbes. 2014;5(3):404–10. doi: 10.4161/gmic.29232.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Tomasino B, Fabbro F. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation. Brain Cogn. 2016;102:46–54. doi: 10.1016/j.bandc.2015.12.004.CrossRefPubMedGoogle Scholar
  81. 81.
    Tracey I. “Seeing” how our drugs work brings translational added value. Anesthesiology. 2013;119(6):1247–8. doi: 10.1097/ALN.0000000000000018.CrossRefPubMedGoogle Scholar
  82. 82.
    Treede RD, Apkarian AV, Bromm B, Greenspan JD, Lenz FA. Cortical representation of pain: functional characterization of nociceptive areas near the lateral sulcus. Pain. 2000;87(2):113–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 2005;28(2):101–7. doi: 10.1016/j.tins.2004.12.002 S0166-2236(04)00369-8 [pii].
  84. 84.
    Turk DC, Okifuji A. Psychological factors in chronic pain: evolution and revolution. J Consult Clin Psychol. 2002;70(3):678–90.CrossRefPubMedGoogle Scholar
  85. 85.
    Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci. 2005;6(7):533–44. doi: 10.1038/nrn1704.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012;73(4):638–52. doi: 10.1016/j.neuron.2012.02.008.
  87. 87.
    Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2003;2(12):973–85. doi: 10.1038/nrd1251 nrd1251 [pii].
  88. 88.
    Wiech K, Jbabdi S, Lin CS, Andersson J, Tracey I. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions. Pain. 2014;155(10):2047–55. doi: 10.1016/j.pain.2014.07.009.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Wiech K, Kalisch R, Weiskopf N, Pleger B, Stephan KE, Dolan RJ. Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J Neurosci. 2006;26(44):11501–9. doi: 10.1523/JNEUROSCI.2568-06.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wiech K, Lin CS, Brodersen KH, Bingel U, Ploner M, Tracey I. Anterior insula integrates information about salience into perceptual decisions about pain. J Neurosci (The Official Journal of the Society for Neuroscience). 2010;30(48):16324–31. doi: 10.1523/JNEUROSCI.2087-10.2010.CrossRefGoogle Scholar
  91. 91.
    Williams FM, Scollen S, Cao D, Memari Y, Hyde CL, Zhang B, Sidders B, Ziemek D, Shi Y, Harris J, Harrow I, Dougherty B, Malarstig A, McEwen R, Stephens JC, Patel K, Menni C, Shin SY, Hodgkiss D, Surdulescu G, He W, Jin X, McMahon SB, Soranzo N, John S, Wang J, Spector TD. Genes contributing to pain sensitivity in the normal population: an exome sequencing study. PLoS Genet. 2012;8(12):e1003095. doi: 10.1371/journal.pgen.1003095.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Willis WD. Nociceptive pathways: anatomy and physiology of nociceptive ascending pathways. Philos Trans R Soc Lond B Biol Sci. 1985;308(1136):253–70.CrossRefPubMedGoogle Scholar
  93. 93.
    Willis WD, Al Chaer ED, Quast MJ, Westlund KN. A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci USA. 1999;96(14):7675–9.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Willis WD, Kenshalo DR Jr, Leonard RB. The cells of origin of the primate spinothalamic tract. J Comp Neurol. 1979;188(4):543–74.CrossRefPubMedGoogle Scholar
  95. 95.
    Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15. doi: 10.1016/j.pain.2010.09.030.CrossRefPubMedGoogle Scholar
  96. 96.
    Woolf CJ, Salter MW. Plasticity and pain: role of the dorsal horn. In: McMahon SB, Koltzenburg M, editors. Wall and Melzack’s Texbook of pain, vol. 5. Philadelphia: Elsevier Limited; 2006. p. 91–105.CrossRefGoogle Scholar
  97. 97.
    Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44(3):293–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Yarnitsky D. Role of endogenous pain modulation in chronic pain mechanisms and treatment. Pain. 2015;156(Suppl 1):S24–31. doi: 10.1097/01.j.pain.0000460343.46847.58.CrossRefPubMedGoogle Scholar
  99. 99.
    Yarnitsky D, Granot M, Nahman-Averbuch H, Khamaisi M, Granovsky Y. Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain. 2012;153(6):1193–8. doi: 10.1016/j.pain.2012.02.021.CrossRefPubMedGoogle Scholar
  100. 100.
    Zhang ZG, Hu L, Hung YS, Mouraux A, Iannetti GD. Gamma-band oscillations in the primary somatosensory cortex—a direct and obligatory correlate of subjective pain intensity. J Neurosci. 2012;32(22):7429–38. doi: 10.1523/JNEUROSCI.5877-11.2012.CrossRefPubMedGoogle Scholar
  101. 101.
    Zhuo M. Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos Trans R Soc Lond B Biol Sci. 2014;369(1633):20130146. doi: 10.1098/rstb.2013.0146.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Surgery/Division of NeurosurgeryUniversité de SherbrookeSherbrookeCanada

Personalised recommendations