Multiple Sclerosis and Pain

Chapter

Abstract

In this chapter, we address a frequent and debilitating symptom—pain of one of the most common causes of neurological disability in the young adult: multiple sclerosis. We introduce multiple sclerosis and define the role of neuroimaging in the diagnosis of the disease and beyond. Pain syndromes in multiple sclerosis are described, as well as other comorbidities that may interfere or be associated with pain. We discuss the published literature in neuroimaging and pain in multiple sclerosis, and emphasize the impact of chronic pain in an already non-resilient brain.

Keywords

Plaque Myelin Lhermitte Psychosocial Default Resting-state Demyelination 

References

  1. 1.
    Compston A, Coles A. Multiple sclerosis. Lancet (London, England). 2008;372:1502–17. doi: 10.1016/S0140-6736(08)61620-7.
  2. 2.
    Stadelmann C, Albert M, Wegner C, Bruck W. Cortical pathology in multiple sclerosis. Curr Opin Neurol. 2008;21:229–34. doi: 10.1097/01.wco.0000318863.65635.9a.CrossRefPubMedGoogle Scholar
  3. 3.
    Lassmann H. New concepts on progressive multiple sclerosis. Curr Neurol Neurosci Rep. 2007;7:239–44.CrossRefPubMedGoogle Scholar
  4. 4.
    Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an International survey. National multiple sclerosis society (USA) Advisory committee on clinical trials of new agents in multiple sclerosis. Neurology. 1996;46:907–11.CrossRefPubMedGoogle Scholar
  5. 5.
    Bronnum-Hansen H, Koch-Henriksen N, Stenager E. Trends in survival and cause of death in Danish patients with multiple sclerosis. Brain. 2004;127:844–50. doi: 10.1093/brain/awh104.CrossRefPubMedGoogle Scholar
  6. 6.
    Traboulsee AL, Li DKB. The role of MRI in the diagnosis of multiple sclerosis. Adv Neurol. 2006;98:125–46.PubMedGoogle Scholar
  7. 7.
    Gawne-Cain ML, O’Riordan JI, Thompson AJ, et al. Multiple sclerosis lesion detection in the brain: a comparison of fast fluid-attenuated inversion recovery and conventional T2-weighted dual spin echo. Neurology. 1997;49:364–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Yousry TA, Filippi M, Becker C, et al. Comparison of MR pulse sequences in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol. 1997;18:959–63.PubMedGoogle Scholar
  9. 9.
    Filippi M, Rocca MA, Horsfield MA, et al. Imaging cortical damage and dysfunction in multiple sclerosis. JAMA Neurol. 2013;70:556–64. doi: 10.1001/jamaneurol.2013.1954.CrossRefPubMedGoogle Scholar
  10. 10.
    Fukutake T, Kuwabara S, Kaneko M, et al. Sensory impairments in spinal multiple sclerosis: a combined clinical, magnetic resonance imaging and somatosensory evoked potential study. Clin Neurol Neurosurg. 1998;100:199–204.CrossRefPubMedGoogle Scholar
  11. 11.
    Tortorella C, Codella M, Rocca MA, et al. Disease activity in multiple sclerosis studied by weekly triple-dose magnetic resonance imaging. J Neurol. 1999;246:689–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Morgen K, Jeffries NO, Stone R, et al. Ring-enchancement in multiple sclerosis: marker of disease severity. Mult Scler. 2001;7:167–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Filippi M. Enhanced magnetic resonance imaging in multiple sclerosis. Mult Scler. 2000;6:320–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302. doi: 10.1002/ana.22366.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Neema M, Stankiewicz J, Arora A, et al. T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimaging. 2007;17(Suppl 1):16S–21S. doi: 10.1111/j.1552-6569.2007.00131.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Simon JH, Li D, Traboulsee A, et al. Standardized MR imaging protocol for multiple sclerosis: consortium of MS centers consensus guidelines. AJNR Am J Neuroradiol. 2006;27:455–61.PubMedGoogle Scholar
  17. 17.
    Schmierer K, Scaravilli F, Altmann DR, et al. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol. 2004;56:407–15. doi: 10.1002/ana.20202.CrossRefPubMedGoogle Scholar
  18. 18.
    Silver NC, Good CD, Barker GJ, et al Sensitivity of contrast enhanced MRI in multiple sclerosis. Effects of gadolinium dose, magnetization transfer contrast and delayed imaging. Brain. 1997;120(Pt 7):1149–61.Google Scholar
  19. 19.
    Le Bihan D. Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed. 1995;8:375–86.CrossRefPubMedGoogle Scholar
  20. 20.
    Kealey SM, Kim Y, Provenzale JM. Redefinition of multiple sclerosis plaque size using diffusion tensor MRI. Am J Roentgenol. 2004;183:497–503. doi: 10.2214/ajr.183.2.1830497.CrossRefGoogle Scholar
  21. 21.
    Laule C, Leung E, Lis DKB, et al. Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology. Mult Scler. 2006;12:747–53. doi: 10.1177/1352458506070928.CrossRefPubMedGoogle Scholar
  22. 22.
    Srinivasan R, Ratiney H, Hammond-Rosenbluth KE, et al. MR spectroscopic imaging of glutathione in the white and gray matter at 7 T with an application to multiple sclerosis. Magn Reson Imaging. 2010;28:163–70. doi: 10.1016/j.mri.2009.06.008.CrossRefPubMedGoogle Scholar
  23. 23.
    Arnold DL, Riess GT, Matthews PM, et al. Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Ann Neurol. 1994;36:76–82. doi: 10.1002/ana.410360115.CrossRefPubMedGoogle Scholar
  24. 24.
    Colorado RA, Shukla K, Zhou Y, Wolinsky JS, Narayana P. Multi-task functional MRI in multiple sclerosis patients without clinical disability. Neuroimage. 2012;59:573–81. doi: 10.1016/j.neuroimage.2011.07.065.Multi-task, https://www.ncbi.nlm.nih.gov/pubmed/21840409.
  25. 25.
    Adhya S, Johnson G, Herbert J, et al. Pattern of hemodynamic impairment in multiple sclerosis: dynamic susceptibility contrast perfusion MR imaging at 3.0 T. Neuroimage. 2006;33:1029–35. doi: 10.1016/j.neuroimage.2006.08.008.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mainero C, Benner T, Radding A, et al. In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology. 2009;73:941–8. doi: 10.1212/WNL.0b013e3181b64bf7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tallantyre EC, Morgan PS, Dixon JE, et al. 3 Tesla and 7 Tesla MRI of multiple sclerosis cortical lesions. J Magn Reson Imaging. 2010;32:971–7. doi: 10.1002/jmri.22115.CrossRefPubMedGoogle Scholar
  28. 28.
    Hammond KE, Metcalf M, Carvajal L, et al. Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron. Ann Neurol. 2008;64:707–13. doi: 10.1002/ana.21582.CrossRefPubMedGoogle Scholar
  29. 29.
    Dousset V, Brochet B, Deloire MSA, et al. MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. AJNR Am J Neuroradiol. 2006;27:1000–5.PubMedGoogle Scholar
  30. 30.
    Stankiewicz J, Panter SS, Neema M, et al. Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics. 2007;4:371–86. doi: 10.1016/j.nurt.2007.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Merskey H, Bogduk N. Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. In: Task force on taxonomy IA for the study of pain. IASP Press; 1994.Google Scholar
  32. 32.
    Loeser JD, Bonica JJ. Bonica’s management of pain. Lippincott Williams & Wilkins; 2001.Google Scholar
  33. 33.
    Baliki MN, Schnitzer TJ, Bauer WR, Apkarian AV. Brain morphological signatures for chronic pain. PLoS ONE. 2011;6:e26010. doi: 10.1371/journal.pone.0026010.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    IASP: IASP taxonomy. http://www.iasp-pain.org/Taxonomy (2012). Accessed 15 Sep 2015.
  35. 35.
    Heesen C, Bohm J, Reich C, et al. Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Mult Scler. 2008;14:988–91. doi: 10.1177/1352458508088916.CrossRefPubMedGoogle Scholar
  36. 36.
    Foley PL, Vesterinen HM, Laird BJ, et al. Prevalence and natural history of pain in adults with multiple sclerosis: systematic review and meta-analysis. Pain. 2013;154:632–42. doi: 10.1016/j.pain.2012.12.002.CrossRefPubMedGoogle Scholar
  37. 37.
    Breivik H, Collett B, Ventafridda V, et al. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10:287–333. doi: 10.1016/j.ejpain.2005.06.009.CrossRefPubMedGoogle Scholar
  38. 38.
    Vacca G, Marano E, Brescia Morra V, et al. Multiple sclerosis and headache co-morbidity. A case-control study. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2007;28:133–5. doi: 10.1007/s10072-007-0805-1.Google Scholar
  39. 39.
    Ergun U, Ozer G, Sekercan S, et al. Headaches in the different phases of relapsing-remitting multiple sclerosis: a tendency for stabbing headaches during relapses. Neurologist. 2009;15:212–6. doi: 10.1097/NRL.0b013e3181906fc9.CrossRefPubMedGoogle Scholar
  40. 40.
    Seixas D. The relationship between chronic pain and neuropsychiatric and neuropsychological disturbances in multiple sclerosis. Porto, Portugal: Faculty of Medicine of Porto University; 2012.Google Scholar
  41. 41.
    Ghaffar O, Feinstein A. The neuropsychiatry of multiple sclerosis: a review of recent developments. Curr Opin Psychiatry. 2007;20:278–85. doi: 10.1097/YCO.0b013e3280eb10d7.CrossRefPubMedGoogle Scholar
  42. 42.
    Minden SL, Schiffer RB. Affective disorders in multiple sclerosis. Review and recommendations for clinical research. Arch Neurol. 1990;47:98–104.CrossRefPubMedGoogle Scholar
  43. 43.
    Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder: results from the National comorbidity survey replication (NCS-R). JAMA. 2003;289:3095–105. doi: 10.1001/jama.289.23.3095.CrossRefPubMedGoogle Scholar
  44. 44.
    Patten SB, Svenson LW, Metz LM. Psychotic disorders in MS: population-based evidence of an association. Neurology. 2005;65:1123–5. doi: 10.1212/01.wnl.0000178998.95293.29.CrossRefPubMedGoogle Scholar
  45. 45.
    Dalton EJ, Heinrichs RW. Depression in multiple sclerosis: a quantitative review of the evidence. Neuropsychology. 2005;19:152–8. doi: 10.1037/0894-4105.19.2.152.CrossRefPubMedGoogle Scholar
  46. 46.
    Alschuler KN, Ehde DM, Jensen MP. Co-occurring depression and pain in multiple sclerosis. Phys Med Rehabil Clin N Am. 2013;24:703–15. doi: 10.1016/j.pmr.2013.06.001.CrossRefPubMedGoogle Scholar
  47. 47.
    Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a literature review. Arch Intern Med. 2003;163:2433–45. doi: 10.1001/archinte.163.20.2433.CrossRefPubMedGoogle Scholar
  48. 48.
    Amtmann D, Askew RL, Kim J, et al. Pain affects depression through anxiety, fatigue, and sleep in multiple sclerosis. Rehabil Psychol. 2015;60:81–90.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology. 1991;41:685–91.CrossRefPubMedGoogle Scholar
  50. 50.
    Kleeberg J, Bruggimann L, Annoni J-M, et al. Altered decision-making in multiple sclerosis: a sign of impaired emotional reactivity? Ann Neurol. 2004;56:787–95. doi: 10.1002/ana.20277.CrossRefPubMedGoogle Scholar
  51. 51.
    Nagy H, Bencsik K, Rajda C, et al. The effects of reward and punishment contingencies on decision-making in multiple sclerosis. J Int Neuropsychol Soc. 2006;12:559–65.CrossRefPubMedGoogle Scholar
  52. 52.
    Benson C, Kerr BJ. Pain and cognition in multiple sclerosis. Curr Top Behav Neurosci. 2014;20:201–15. doi: 10.1007/7854.CrossRefPubMedGoogle Scholar
  53. 53.
    Leonavicius R, Kalnina J. Beyond pain in multiple sclerosis. Neurol Psychiatry Brain Res. 2015;21:82–7. doi: 10.1016/j.npbr.2015.01.003.CrossRefGoogle Scholar
  54. 54.
    Hadjimichael O, Kerns RD, Rizzo MA, et al. Persistent pain and uncomfortable sensations in persons with multiple sclerosis. Pain. 2007;127:35–41. doi: 10.1016/j.pain.2006.07.015.CrossRefPubMedGoogle Scholar
  55. 55.
    Kerns RD, Kassirer M, Otis J. Pain in multiple sclerosis: a biopsychosocial perspective. J Rehabil Res Dev. 2002;39:225–32.PubMedGoogle Scholar
  56. 56.
    Shahrbanian S, Auais M, Duquette P, et al. Does pain in individuals with multiple sclerosis affect employment? A systematic review and meta-analysis. Pain Res Manag. 2013;18:e94–100.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Forbes A, While A, Mathes L, Griffiths P. Health problems and health-related quality of life in people with multiple sclerosis. Clin Rehabil. 2006;20:67–78.CrossRefPubMedGoogle Scholar
  58. 58.
    Osterberg A, Boivie J, Thuomas K-A. Central pain in multiple sclerosis–prevalence and clinical characteristics. Eur J Pain. 2005;9:531–42. doi: 10.1016/j.ejpain.2004.11.005.CrossRefPubMedGoogle Scholar
  59. 59.
    Truini A, Barbanti P, Pozzilli C, Cruccu G. A mechanism-based classification of pain in multiple sclerosis. J Neurol. 2013;260:351–67. doi: 10.1007/s00415-012-6579-2.CrossRefPubMedGoogle Scholar
  60. 60.
    Stovner LJ, Hagen K, Jensen R, et al. The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia. 2007;27:193–210. doi: 10.1111/j.1468-2982.2007.01288.x.
  61. 61.
    Al-Araji AH, Oger J. Reappraisal of Lhermitte’s sign in multiple sclerosis. Mult Scler. 2005; 11:398–402. doi: 10.1191/1352458505ms1177oa.
  62. 62.
    Spissu A, Cannas A, Ferrigno P, et al. Anatomic correlates of painful tonic spasms in multiple sclerosis. Mov Disord. 1999;14:331–5. doi: 10.1002/1531-8257(199903)14:2<331:AID-MDS1020>3.0.CO;2-H.CrossRefPubMedGoogle Scholar
  63. 63.
    Dooley MC, Foroozan R. Optic neuritis. J Ophthalmic Vis Res. 2010;5:182–7.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Gronseth G, Cruccu G, Alksne J, et al. Practice parameter: the diagnostic evaluation and treatment of trigeminal neuralgia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the European Federation of Neurological Societies. Neurology. 2008;71:1183–90. doi: 10.1212/01.wnl.0000326598.83183.04.CrossRefPubMedGoogle Scholar
  65. 65.
    Cruccu G, Truini A. Sensory profiles: a new strategy for selecting patients in treatment trials for neuropathic pain. Pain. 2009;146:5–6. doi: 10.1016/j.pain.2009.07.004.CrossRefPubMedGoogle Scholar
  66. 66.
    Truini A, Galeotti F, La Cesa S, et al. Mechanisms of pain in multiple sclerosis: a combined clinical and neurophysiological study. Pain. 2012;153:2048–54. doi: 10.1016/j.pain.2012.05.024.CrossRefPubMedGoogle Scholar
  67. 67.
    Simpson DM, McArthur JC, Dworkin RH. Neuropathic pain: mechanisms, diagnosis and treatment. USA: OUP; 2012.CrossRefGoogle Scholar
  68. 68.
    Seixas D, Foley P, Palace J, et al. Pain in multiple sclerosis: a systematic review of neuroimaging studies. NeuroImage Clin. 2014;5:322–31. doi: 10.1016/j.nicl.2014.06.014.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Fragoso YD, Brooks JBB. Two cases of lesions in brainstem in multiple sclerosis and refractory migraine. Headache. 2007;47:852–4. doi: 10.1111/j.1526-4610.2007.00823.x.CrossRefPubMedGoogle Scholar
  70. 70.
    Haas DC, Kent PF, Friedman DI. Headache caused by a single lesion of multiple sclerosis in the periaqueductal gray area. Headache. 1993;33:452–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Kister I, Caminero AB, Monteith TS, et al. Migraine is comorbid with multiple sclerosis and associated with a more symptomatic MS course. J Headache Pain. 2010;11:417–25. doi: 10.1007/s10194-010-0237-9.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Broggi G, Ferroli P, Franzini A, et al. Operative findings and outcomes of microvascular decompression for trigeminal neuralgia in 35 patients affected by multiple sclerosis. Neurosurgery. 2004;55:830–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Cruccu G, Biasiotta A, Di Rezze S, et al. Trigeminal neuralgia and pain related to multiple sclerosis. Pain. 2009;143:186–91. doi: 10.1016/j.pain.2008.12.026.CrossRefPubMedGoogle Scholar
  74. 74.
    Gass A, Kitchen N, MacManus DG, et al. Trigeminal neuralgia in patients with multiple sclerosis: lesion localization with magnetic resonance imaging. Neurology. 1997;49:1142–4.CrossRefPubMedGoogle Scholar
  75. 75.
    Da Silva CJ, da Rocha AJ, Mendes MF, et al. Trigeminal involvement in multiple sclerosis: magnetic resonance imaging findings with clinical correlation in a series of patients. Mult Scler. 2005;11:282–5.CrossRefPubMedGoogle Scholar
  76. 76.
    Eldridge PR, Sinha AK, Javadpour M, et al. Microvascular decompression for trigeminal neuralgia in patients with multiple sclerosis. Stereotact Funct Neurosurg. 2003;81:57–64. doi:75105.Google Scholar
  77. 77.
    Alstadhaug K, Breivik K, Rusic Z. Recurrent headache due to MS plaque. Headache. 2008;48:453–4. doi: 10.1111/j.1526-4610.2007.01003.x.CrossRefPubMedGoogle Scholar
  78. 78.
    De Santi L, Monti L, Menci E, et al. Clinical-radiologic heterogeneity of occipital neuralgiform pain as multiple sclerosis relapse. Headache. 2009;49:304–7. doi: 10.1111/j.1526-4610.2008.01209.x.CrossRefPubMedGoogle Scholar
  79. 79.
    Hellwig K, Lukas C, Brune N, et al. Repeat intrathecal triamcinolone acetonide application reduces acute occurring painful dysesthesia in patients with relapsing remitting multiple sclerosis. Sci World J. 2006;6:460–5. doi: 10.1100/tsw.2006.86.CrossRefGoogle Scholar
  80. 80.
    Tosi L, Righetti CA, Zanette G, Beltramello A. A single focus of multiple sclerosis in the cervical spinal cord mimicking a radiculopathy. J Neurol Neurosurg Psychiatry. 1998;64:277.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Burkey AR, Abla-Yao S. Successful treatment of central pain in a multiple sclerosis patient with epidural stimulation of the dorsal root entry zone. Pain Med. 2010;11:127–32. doi: 10.1111/j.1526-4637.2009.00764.x.CrossRefPubMedGoogle Scholar
  82. 82.
    Bowsher D, Leijon G, Thuomas KA. Central poststroke pain: correlation of MRI with clinical pain characteristics and sensory abnormalities. Neurology. 1998;51:1352–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Svendsen KB, Sorensen L, Jensen TS, et al. MRI of the central nervous system in MS patients with and without pain. Eur J Pain. 2011;15:395–401. doi: 10.1016/j.ejpain.2010.09.006.CrossRefPubMedGoogle Scholar
  84. 84.
    Owen DG, Bureau Y, Thomas AW, et al. Quantification of pain-induced changes in cerebral blood flow by perfusion MRI. Pain. 2008;136:85–96. doi: 10.1016/j.pain.2007.06.021.CrossRefPubMedGoogle Scholar
  85. 85.
    Baliki MN, Chialvo DR, Geha PY, et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 2006;26:12165–73. doi: 10.1523/JNEUROSCI.3576-06.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413:203–10. doi: 10.1038/35093019.CrossRefPubMedGoogle Scholar
  87. 87.
    Rodriguez-Raecke R, Niemeier A, Ihle K, et al. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci. 2009;29:13746–50. doi: 10.1523/JNEUROSCI.3687-09.2009.CrossRefPubMedGoogle Scholar
  88. 88.
    Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81–97. doi: 10.1016/j.pneurobio.2008.09.018.CrossRefPubMedGoogle Scholar
  89. 89.
    Baliki MN, Geha PY, Apkarian AV, Chialvo DR. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci. 2008;28:1398–403. doi: 10.1523/JNEUROSCI.4123-07.2008.CrossRefPubMedGoogle Scholar
  90. 90.
    Cauda F, D’Agata F, Sacco K, et al. Altered resting state attentional networks in diabetic neuropathic pain. J Neurol Neurosurg Psychiatry. 2010;81:806–11. doi: 10.1136/jnnp.2009.188631.CrossRefPubMedGoogle Scholar
  91. 91.
    Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. Brain resting state is disrupted in chronic back pain patients. Neurosci Lett. 2010;485:26–31. doi: 10.1016/j.neulet.2010.08.053.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Pizoli CE, Shah MN, Snyder AZ, et al. Resting-state activity in development and maintenance of normal brain function. Proc Natl Acad Sci U S A. 2011;108:11638–43. doi: 10.1073/pnas.1109144108.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82. doi: 10.1073/pnas.98.2.676.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. doi: 10.1196/annals.1440.011.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biomedicine, Faculty of MedicinePorto UniversityPortoPortugal

Personalised recommendations