Skip to main content

Biochar for Agriculture in Pakistan

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Abstract

Escalating greenhouse gas emissions are influenced by anthropogenic activities and have taken climate change issues to global forums. Pressure on already stressed energy, water provision, and management infrastructure including flood risks has mounted. Soil degradation, alkalinity, wastewater and solids management, trace metals and nutrient deficient drylands lacking water holding capacity have emerged as growing problems for Pakistan’s economy. The increased pH of soils, contaminations of heavy metals, lack of waste treatment technology, unstable soil organic carbon and capacity of soils to exchange ions for the utilization by crop plants especially in dry land agriculture are notorious realities.

Biochar, a product of biomass pyrolysis, improves the nutrient and water holding capacity along with production of syngas for bioenergy. Biochar allows to recycle farm waste. Biochar addition at 0.5 % increased total organic carbon 23–30 % in soil. Biochar produced at 400 °C with low pH and high cation exchange capacity is a better option than other amendments as it resulted in the highest values of cation exchange capacity and deemed fit for alkaline soils of Pakistan using suitable feedstock, preferably bagasse. Biochar combinations of high nutritious value, e.g. municipal solid organic wastes and animal manures, may directly provide plant nutrients. In arid areas, studies showed improvement in plant growth and yield by biochar application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas G, Hassan G, Ali MA, Aslam M, Abbas Z (2010) Response of wheat to different doses of ZnSO4 under Thall desert environment. Pak J Bot 42(6):4079–4085

    CAS  Google Scholar 

  • Abida, Sajida P (2013) Use of organic amendments for improving zinc use efficiency and uptake by cereal crops in saline and calcareous soils of Khyber Pakhtunkhwa. Ph.D. dissertation. Submitted to The University of Agriculture Peshawar

    Google Scholar 

  • Ahmad, T (2013) Production and impact of biochar application on soil microbial activity and crop growth. M.Sc (Hons.)/M.phil thesis, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan

    Google Scholar 

  • Ahmad N, Saleem MT, Rashid M, Jalil A (1994) Sulfur status and crop response in Pakistan soils. NNFDC Publication No. 7/94, Planning and Development Division, Islamabad, Pakistan

    Google Scholar 

  • Ahmad D, Zara S, Baig H (2013a) In vitro analysis of antioxidant activities of Oxalis corniculata Linn. Fractions in various solvents. Afr J Tradit Complement Altern Med 10(1):158–165, http://dx.doi.org/10.4314/ajtcam.v10i1.21

    Google Scholar 

  • Ahmad S, Ahsan-ul-Haq, Yousaf M, Kamran Z, Ata-ur-Rehman, Sohail MU, Shahid-ur-Rahman (2013b) Effect of feeding whole linseed as a source of polyunsaturated fatty acids on performance and egg characteristics of laying hens kept at high ambient temperature. Braz J Poult Sci 15(1):21–25

    Google Scholar 

  • Akbar H, Ahmad M (2013) Ph.D. dissertation. submitted to the University of Agriculture Peshawar, Pakistan

    Google Scholar 

  • Amonette JE, Jospeh S (2009) Characteristics of Biochar: Microchemical Properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Sci Technol Earthscan, London, pp. 33–52

    Google Scholar 

  • Arif, M, Ali K (2011) Integrated use of biochar, farmyard manure and nitrogen fertilizer for enhancing productivity of cereal and legume based cropping patterns. First year technical report submitted to Higher Education Commission of Pakistan, Islamabad

    Google Scholar 

  • Arif M, Ali K (2012) Integrated use of biochar, farmyard manure and nitrogen fertilizer for enhancing productivity of cereal and legume based cropping patterns. Second year technical report submitted to Higher Education Commission of Pakistan, Islamabad

    Google Scholar 

  • Arif M, Ali A, Umair M, Munsif F, Ali K, Inamullah SM, Ayub G (2012) Effect of biochar, FYM and mineral nitrogen alone and in combination on yield and yield components of maize. Sarhad J Agric 28(2):191–195

    Google Scholar 

  • Arif M, Kawsar A, Sirajul Haq M, Khan Z (2013) Biochar, FYM and nitrogen increases weed infestation in wheat. Pak J Weed Sci Res 19(4):411–418

    Google Scholar 

  • Artiola JF, Craig R, Robert F (2012) Effects of a biochar-amended alkaline soil on the growth of Romaine lettuce and Bermuda grass. Soil Sci 177:561–570. doi:10.1097/SS.0b013e31826ba908

    Article  CAS  Google Scholar 

  • Asai H, Samson KB, Stephan MH, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res 111:81–84. doi:10.1016/j.fcr.2008.10.008

    Article  Google Scholar 

  • Azeem M (2014) Microbial communities dynamic and CO2 emission in biochar amended legume-cereal cropping system. Ph.D thesis, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan

    Google Scholar 

  • Azeem M, Chaudhry AN, Faheem M, Imran M, Riaz A, Satti A (2014) Nutrients release pattern during co-composting of poultry litter and different sources of fast food wastes. Int J Biosci 5(12):105–115

    Article  CAS  Google Scholar 

  • Bajwa MI, Rehman F (1996) Soil and fertilizer potassium. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp. 317–340

    Google Scholar 

  • Balasubramaniyan P, Palaniappan SP (2001) Water management: principles and practices of agronomy. Agrobios, India

    Google Scholar 

  • Bashir Q, Meulenbroek EM, Pannu NS, Ubbink M (2014) Engineering specificity in a dynamic protein complex with a single conserved mutation. FEBS J 281(21):4892–905

    Article  CAS  PubMed  Google Scholar 

  • Basso AS, Miguez FE, David AL, Robert H, Westgate M (2013) Assessingpotential of biochar for increasing water-holding capacity of sandy soils. GCBBioenergy 5 (2), 132-143, http://dx.doi.org/10.1111/gcbb.12026

  • Beesley L, Jiménez EM, Eyles JLG (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287. doi:10.1016/j.envpol.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  • Brewer CE, Hu Y, Schmidt-Rohr K, Loynachan TE, Laird DA, Brown RC (2012) Extent of pyrolysis impacts on fast pyrolysis biochar properties. J Environ Qual 41:1115–1122. doi:10.2134/jeq2011.0118

    Article  CAS  PubMed  Google Scholar 

  • Bridgwater AV (2012) Overcoming barriers to bioenergy: outcomes of the bioenergy network of excellence 2003–2009. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  • Cao XD, Harris W (2010) Properties of dairy manure derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. doi:10.1016/j.biortech.2010.02.052

    Article  CAS  PubMed  Google Scholar 

  • Cao XD, Ma LN, Gao B, Harris W (2009) Dairy-Manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291. doi:10.1021/es803092k

    Article  CAS  PubMed  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: Nutrient properties and their enhancement. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Sci Technol Earthscan, London, pp. 67–84

    Google Scholar 

  • Chan KY, Zwieten LV, Meszaros I, Downie A, Joseph S (2007) Agronomic values of green-waste biochar as a soil amendment Austr J Soil Res 45:629-634. http://dx.doi.org/10.1071/SR07109

  • Choppala GK, Bolan NS, Megharaj M, Chen Z, Naidu R (2012) The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. J Environ Qual 41:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Crane-Droesch A, Abiven S, Jeffery S, Torn MS (2013) Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ Res Lett 8:44–49

    Article  Google Scholar 

  • Deal C, Brewer CE, Brown RC, Okure MAE, Amoding A (2012) Comparison of kiln-derived and gasifier-derived biochar as soil amendments in the humid tropics. Biomass Bioenergy 37:161–168

    Article  CAS  Google Scholar 

  • Dempster DN, Jones DL, Murphy DV (2012) Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res 50:216-221 http://dx.doi.org/10.1071/SR11316

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology’. Earthscan, London, pp 13–32

    Google Scholar 

  • FAO (2008) Climate change adaptation and mitigation. In: The food and agriculture sector technical background document from the expert consultation, Rome

    Google Scholar 

  • Farooq NI, Shah H (2011) Effect of acidified coal on proximate composition of maize. M.Sc. (Hons) thesis. Department Agricultural Chemistry. The University of Agriculture Peshawar, Pakistan

    Google Scholar 

  • Fernández JM, Nieto M, López-de-Sá EG, Esther G, Gascó G, Méndez A, César P (2014) Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Sci Total Environ:482–483. doi:10.1016/j.scitotenv.2014.02.103

  • Fisher RF, Binkley D (2000) Ecology and management of forest soils. Wiley, New York, p. 489

    Google Scholar 

  • Gangil S, Wakudkar HM (2013) Generation of bio-char from crop residue. Int J EmergTechnol Adv Eng 3(3):566–570

    Google Scholar 

  • Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51:2061–2069

    Article  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fertil Soils 35:219–230. doi:10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Government of Pakistan (2011) Census 2011 Population Census Organization, Government of Pakistan, Islamabad, Pakistan

    Google Scholar 

  • Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231:86–93. doi:10.1016/j.foreco.2006.05.004

    Article  Google Scholar 

  • Hafeez A, Suhail SM, Durrani FR et al (2009) Effect of different types of locally available litter materials on the performance of broiler chicks. Sarhad J Agric 25:581–586

    Google Scholar 

  • Halvin JL, Tisdale SL, Nelson EL, Beaton JD (2014) Sulfur, calcium and madnesium. In: Soil fertility and fertilizers. Pearson Education, New Jersey, pp. 239–260

    Google Scholar 

  • Hameed Z (2014) Impact of biochar on soil quality and crop productivity of mung bean with and without N-fertilization. M.Sc (Hons.)/M.phil thesis, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan

    Google Scholar 

  • Hameed A, Egamberdieva D, Abd_Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 39–159

    Google Scholar 

  • Haq I, Jakhro AA (1996) Soil and fertilizer nitrogen. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp 262–263

    Google Scholar 

  • Ippolito JA, Laird DA, Busscher WJ (2012a) Environmental benefits of biochar. J Environ Qual 41:967–972. doi:10.2134/jeq2012.0151

    Article  CAS  PubMed  Google Scholar 

  • Ippolito JA, Novak JM, Busscher WJ, Ahmedna M, Rehrah D, Watts DW (2012b) Switchgrass biochar affects two Aridisols. J Environ Qual 41:1123–1130. doi:10.2134/jeq2011.0100

    Article  CAS  PubMed  Google Scholar 

  • Ippolito JA, Stromberger ME, Lentz RD, Dungan RS (2014) Hardwood biochar influences calcareous soil physic-chemical and microbiological status. J Environ Qual 41:967–972. doi:10.2134/jeq2012.0151

    Article  CAS  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187. doi:10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–205

    Google Scholar 

  • Joseph S, Graber E, Chia C et al (2013) Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-structures and soluble components. Carbon Manage 4(3):323–343

    Article  CAS  Google Scholar 

  • Kameyama K, Miyamoto T, Shiono T (2012) Influence of sugarcane bagassed erived biochar application on nitrate leaching in calcaric dark red soil. J Environ Qual 41:1131–1137. doi:10.2134/jeq2010.0453

    Article  CAS  PubMed  Google Scholar 

  • Khan KS, Joergensen RG (2006) Microbial C, N, and P relationships in moisture stressed soils of Pothowar, Pakistan. J Plant Nutr 169:494–500

    Article  CAS  Google Scholar 

  • Khan A, Khan MJ (2012) Management of salt affected soil through cultural practices and organic amendment using sorghum as a test crop. M.Sc. (Hons) thesis. Department Soil and Environmental Sciences. The University of Agriculture Peshawar, Pakistan

    Google Scholar 

  • Khan TS, Mubeen U (2012) Wheat straw: a pragmatic overview. Curr Res J Biol Sci 4:673–675

    CAS  Google Scholar 

  • Khan MA, Shirazi MU, Ali M, Mumtaz S, Sherin A, Ashraf MY (2006) Comparative performance of some wheat hybrids growing under saline conditions. Pak J Bot 38(5):1633–1639

    Google Scholar 

  • Khan NU, Khan HU, Usman K et al (2007) Growth and yield related characteristics of improved. Sarhad J Agric 23:260–263

    Google Scholar 

  • Khan A, Hawkesworth S, Hawlader MDH, Arifeen SE, Moore S, Hills AP, Wells JC, Persson LA, Kabir I (2012) Body composition of Bangladeshi children: comparison and development of leg-to-leg bioelectrical impedance equation. J Health Popul Nutr 30(3):281–290, ISSN 1606–0997

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan N, Shah Z, Ahmed N, Ahmad S, Mehmood N (2013) Effect of integrated use of biochar, FYM and nitrogen fertilizer on soil organic fertility. J Pure Appl Bio 2(2):42–47

    Article  CAS  Google Scholar 

  • Khattak RA (1996) Chemical properties of soil. In: Bashir E, Bental R (eds) Soil science. National Book Foundation, Islamabad, pp 167–199

    Google Scholar 

  • Khattak GSS, Ashraf M, Zamir R (2004) Gene action for synchrony in pod maturity and indeterminate growth habit in mungbean (Vigna radiata L.). Pak J Bot 36(3):589–594

    Google Scholar 

  • Knoepp JD, Debano LF, Neary DG (2005) Agriculture. Forest Serv Soil Chem:42–44

    Google Scholar 

  • Koutcheiko S, Monreal CM, Kodama H, Mcracken T, Kotlyar L (2006) Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresour Technol 98:2459–2464. doi:10.1016/j.biortech.2006.09.038

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK, Pathak H, Krupnik TJ, Six J, Kessel CV (2005) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv Agron 57:85–156. doi:10.1016/S0065-2113(05)87003-8

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010a) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. doi:10.1016/j.geoderma.2010.05.013

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Wang B, Horton R, Karlen DL (2010b) Biochar impacton nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442. doi:10.1016/j.geoderma.2010.05.012

    Article  CAS  Google Scholar 

  • Lehmann J (2007a) Bio-energy in the black. Frontiers Ecol Environ 5(7): 381-387.http://dx.doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2

    Google Scholar 

  • Lehmann J (2007b) A handful of carbon. An article published by. Nature 447(7141):143–144. doi:10.1038/447143a

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental Management: Science and Technology. Earthscan, London, pp. 1–12

    Google Scholar 

  • Lehmann J, Rondon M (2006) Biochar soil management on highly weathered soils in the humid tropics. In: Uphoff NT et al (eds) Biological approaches to sustainable soil systems. CRC/Taylor and Francis, Boca Raton, pp. 517–530

    Chapter  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems-a review. Mitig Adapt Strateg Glob Chang 11(2):403–427. doi:10.1007/s11027-005-9006-5

    Article  Google Scholar 

  • Lehmann J, Pereira da Silva J, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249(2):343–357

    Article  CAS  Google Scholar 

  • Lentz RD, Ippolito JA (2012) Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J Environ Qual 41(4):1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shen Q, Zhang D, Mei X, Ran W, Xu Y, Yu G (2013) Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13c nmr correlation. Spectroscopy 8(6):1–7. doi:10.1371/journal.pone.0065949

    Google Scholar 

  • Lima SFI, Timossi PCI, Almeida DP, Silva UR (2014) Weed suppression in the formation of brachiarias under three sowing methods. Planta Daninha 32(4):699–707

    Article  Google Scholar 

  • Liu XH, Zhang XC (2012) Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments. Int J Agric Biol 14(5):745–750

    CAS  Google Scholar 

  • Lock K, Zeeuw HD (2001) Health and environmental risks associated with urban agriculture. Urban Agric Mag 1:6–8

    Google Scholar 

  • Lua W, Casanueva MO, Mahowald AP, Kato M, Lauterbach D, Ferguson EL (2012) Niche-associated activation of rac promotes the asymmetric division of Drosophila female germline stem cells. PLoS Biol 10(7), e1001357

    Article  CAS  Google Scholar 

  • Lua K, Yang X, Shenb J, Robinsonc B, Huangd H, Liua D, Bolane N, Peib J, Wanga H (2014) Effect of bamboo and rice straw biochars on the bioavailability of Cd,Cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132, doi:http://dx.doi.org/10.1016/j.agee.2014.04.010

    Article  CAS  Google Scholar 

  • Mahar A, Malik RN, Qadir A, Ahmed T, Khan Z, Khan MA (2007) Review and analysis of current solid waste management situation in urban areas of Pakistan. In: Proceedings of the international conference sustainable solid waste management, vol 8

    Google Scholar 

  • Mahmood T, Gill MA, Waheed T, Ahmad Z, Rehman H (2001) Potassium deficiency-stress tolerance in wheat genotypes II: Soil culture study. Inter J Agric Biol 03(1):117–120

    Google Scholar 

  • Malik S (1996) Determinants of rural poverty in Pakistan: a micro study. Pak Deve Rev 35(2):171–187

    Google Scholar 

  • Mapanda F, Mangwayana EN, Nyamangara J, Giller KE (2005) The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare. Zimbabwe Agric Ecosyst Environ 107:151–165. doi:10.1016/j.agee.2004.11.005

    Article  CAS  Google Scholar 

  • Memon KS (1996) Soil and fertilizer phosphorus. In: Bashir E, Bantel R (eds) Soil science. National Book Foundation, Islamabad, pp. 291–316

    Google Scholar 

  • Milacic R, Kralj B (2003) Determination of Zn, Cu, Cd, Pb, Ni and Cr in some Slovenian foodstuffs. Eur Food Res Technol 217:211–214. doi:10.1007/s00217-003-0755-7

    Article  CAS  Google Scholar 

  • Mohammad, D. and Alamgir A 2013. Response of wheat to residual biochar and FYM. MSc (Hons) thesis. Submitted to the University of Agriculture Peshawar, Pakistan.

    Google Scholar 

  • Naeem MA, Khalid M, Arshad M, Ahmad R (2014) Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pak J Agri Sci 51(1):75–82

    Google Scholar 

  • Neary D, Klopatek C, Debano L, Ffolliott P (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71. doi:10.1016/S0378-1127(99)00032-8

    Article  Google Scholar 

  • Nelissen V, Ruysschaert G, Müller-Stöver D, Bode S, Cook J, Ronsse F, Shackley S, Boeckx P, Hauggaard-Nielsen H (2014) Short-term effect of feedstock and pyrolysis temperature on biochar characteristics, soil and crop response in temperate soils. Agron 4: 2-73. doi:10.3390/agronomy4010052

    Google Scholar 

  • Nema BP (2012) Charring-briquetting: a novel cooking fuel technology. Energy. Manager 5(1):43–46

    Google Scholar 

  • Noor NM, Shariff A, Abdullah N (2012) Slow Pyrolysis of Cassava Wastes for Bio-char Production and Characterization. Iranica J Energy Environ 3:60–65

    Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    CAS  Google Scholar 

  • Novak JM, Busscher WJ, Watts DW, Amonette JE, Ippolito JA, Lima IM, Gaskin J, Das KC, Steiner C, Ahmedna M, Rehran D, Schomberg H (2012) Biochars impact on soil moisture storage in an Ultisol and two Aridisols. Soil Sci 177:310–320. doi:10.1097/SS.0b013e31824e5593

    Article  CAS  Google Scholar 

  • Oladeji JT (2010) Investigations into pyrolysis of few selected agro-residues commonly found in Nigeria. Pac J Sci Technol 11:450–454

    Google Scholar 

  • Pak-EPA (2005) Guidelines for solid waste management, Pak-EPA in collaboration with JICA, Ministry of Environment, PEP and UNDP (2005)

    Google Scholar 

  • Pan G, Li L, Wu L et al (2003) Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob Chang Biol 10:79–92. doi:10.1111/j.1365-2486.2003.00717.x

    Article  Google Scholar 

  • Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A, Hipp MS, Hartl MH, Hartl FU (2013) Poly Q proteins interfere with nuclear degradation of cytosolic proteins by sequestering Sis1p chaperon. Cell 154:134–145

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Cadmium concentration in vegetables grown on urban soils irrigated with untreated municipal sewage. Environ DevSustain 2:13–21

    Google Scholar 

  • Qayyum MF, Abid M, Danish S, Saeed MK, Ali MA (2014) Production, characterization and evaluation of various biochars for use as an organic amendment in Pakistan. Pak J Agric Sci (under review)

    Google Scholar 

  • Quilliam RS, Williams AP, Jones DL (2012) Lettuce cultivar mediates both phyllosphere and rhizosphere activity of Escherichia coli O157:H7. PLoS One 7, e33842. doi:10.1371/journal.pone.0033842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid A (1996) Soil and fertilizer potassium. In: Bashir E, Bantel R (eds) Soil Science. National book foundation, Islamabad, pp. 341–386

    Google Scholar 

  • Rashid A, Ryan J, Chaudhary MA (2004) Challenges and strategies for dryland agriculture in Pakistan. In: Rao SC, Ryan J (eds) Challenges and Strategies of Dryland Agriculture cssa special publication 32 P, pp. 359–371. doi:10.2135/cssaspecpub32.c22

    Google Scholar 

  • Rinaudo V, Barberi P, Giovannetti M, van der Heijden MGA (2010) Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333:1–5. doi:10.1007/s11104-010-0361-y

    Article  CAS  Google Scholar 

  • Rondon M, Ramirez JA, Lehmann J (2005) Greenhouse gas emissions decrease with charcoal additions to tropical soils. http://soilcarboncenter.k-state.edu/conference/USDA%20Abstracts%20html/Abstract%20Rondon.htm

  • Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007a) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708. doi:10.1007/s00374-006-0152-z

    Article  Google Scholar 

  • Rondon J, Ramirez A, Lehmann J (2007b) Charcoal additions reduce net emission of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA symposium greenhouse gases and carbon sequestration, Baltimore, USA, p 208.

    Google Scholar 

  • Saghir M, Siddiqui SU, Wirtz U, Hornung A (2013) Characterization of the products from Intermediate pyrolysis different feedstock. Biochars, digestate and composts International conference BCD 2013 Bari, (2013) S2.2.06

    Google Scholar 

  • Saleem A, Parveen S, Khan MJ (2012) Effect of biochar, farmyard manure and poultry manure on Zn adsorption in calcareous alkaline soil. Sarhad J Agric 32(4):354–363

    Article  Google Scholar 

  • Shenbagavalli S, Mahimairaja S (2012) Characterization and effect of biochar on nitrogen and carbon dynamics in soil. Int J Agri Bio Res 2(2):249–255

    Google Scholar 

  • Silanikove N, Levanon D (1986) Cotton Straw : Composition, Variability and Effect of Anaerobic Preservation. Biomass 9:101–112. doi:10.1016/0144-4565(86)90114-9

    Article  CAS  Google Scholar 

  • Singh KP, Mohon D, Sinha S, Dalwani R (2004) Impact assessment of treated/untreated wastewater toxicants discharge by sewage treatment plants on health, agricultural and environmental quality in wastewater disposal area. Chemosphere 55:227–255. doi:10.1016/j.chemosphere.2003.10.050

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Aus J Soil Res 48:516–525. doi:10.1071/SR10058

    Article  CAS  Google Scholar 

  • Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347. doi:10.1016/j.soilbio.2010.09.013

    Article  CAS  Google Scholar 

  • Sohi S, Lopez-Capel E, Krull E, Bol R (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land Water Sci Rep 5(09):02

    Google Scholar 

  • Sohi SP, Krull E, Capel EL, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. doi:10.1016/S0065-2113(10)05002-9

    Article  CAS  Google Scholar 

  • Spokas AK, Reicosky DC (2009) Impacts of sixteen different biochars on soil greenhouse gas production. Ann Environ Sci 3:179–193

    CAS  Google Scholar 

  • Steiner C, Teixeira W, Lehmann J, Nehls T, Vasconcelos de Macedo J, Blum W, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:1–2. doi:10.1007/s11104-007-9193-9

    Article  CAS  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of Soils: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, 2nd edn. Wiley, New York

    Google Scholar 

  • Streubel JD, Collins HP, Garcia-Perez M, Tarara J, Granatstein D, Kruger CE (2011) Influence of contrasting biochar types on five soils at increasing rates of application. Soil Sci Soc Am J 75:1402–1413. doi:10.2136/sssaj2010.0325

    Article  CAS  Google Scholar 

  • Teel WS (2012) Capturing heat from a batch bio-char production system use in green house and hoop houses. J Agric Sci Technol 2:1332–1343

    Google Scholar 

  • Tonutare T, Krebstein K, Utso M, Rodima A, Kolli R, Shanskiy M (2014) Biochar contribution to soil pH buffer capacity. Geophys Res Abstr 16. EGU2014-10354

    Google Scholar 

  • Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM (2011) Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J Agric Food Chem 59(6):2501–2510

    Article  CAS  PubMed  Google Scholar 

  • Ulyett J, Sakrabani R, Kibblewhite M, Hann M (2014) Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. Eur J Soil Sci 65:96–104. doi:10.1111/ejss.12081

    Article  CAS  Google Scholar 

  • Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nihihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Mgt 27:205–212. doi:10.1111/j.1475-2743.2011.00340.x

    Article  Google Scholar 

  • Veiga RSL, Jansa J, Frossard E, van der Heijden MGA (2011) Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS One 6:1–10, doi: http://dx.doi.org/10.1371/journal.pone.0027825

    Google Scholar 

  • Verbruggen F, Adams R, Chambers CD (2012) Proactive motor control reduces monetary risk taking in gambling. Psychol Sci 23:805–815, http://dx.doi.org/10.1177/0956797611434538

    Article  PubMed  PubMed Central  Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, Velde MV, Diafas I (2010) Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. JRC Sci Tech Rep 149. doi:10.2788/472

  • Wang S, Zhao X, Xing G, Yang L (2013) Large-scale bio-char production from crop residue. a new idea and the biogas-energy pyrolysis system. Biol Res 8(1):8–11

    CAS  Google Scholar 

  • World Bank (2006) The World Bank Annual Report. www.worldbank.org.

  • Wu YC, Chen CH, Mercer A, Sokol NS (2012) let-7-complex MicroRNAs regulate the temporal identity of drosophila mushroom body neurons via chinmo. Dev Cell 23(1):202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut and soil chemical properties in south Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495. doi:10.1111/j.1747-0765.2006.00065.x

    Article  CAS  Google Scholar 

  • Yuan J, Xu R, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. doi:10.1016/j.biortech.2010.11.018

    Article  CAS  PubMed  Google Scholar 

  • Zhang JH, Jiao YJ, Li GT, Zhao XR, Lin QM (2011) Does adding wheat straw biochar improve rape growth? Int Conf Bioinformat Biomed Eng:1–4. doi:10.1109/icbbe.2011.5781487

  • Zwieten VL, Kimber S, Morris S, Chan YK, Downie A, Rust J, Joseph S, Cowie A (2010) Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246. doi:10.1007/s11104-009-0050-x

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the financial support provided by the British Council which facilitated the workshop on biochar organized at University of Agriculture, Faisalabad where most of the authors had the opportunity to meet and this article is an output from this scientific meeting.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fahd Rasul or Ruben Sakrabani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rasul, F. et al. (2017). Biochar for Agriculture in Pakistan. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-48006-0_4

Download citation

Publish with us

Policies and ethics