The ICARO Goal Driven Agent Pattern

  • Francisco Garijo
  • Juan PavónEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10022)


ICARO is an open source platform for the implementation of multi-agent systems (MAS), which provides architectural patterns for several types of agent models, following well established software engineering principles. This paper describes a pattern of cognitive agent, whose main characteristic is to be goal-driven, and its logic described as a rule based system. This has been used in different real projects and as a tool in a master course on the development of intelligent agent applications. Some of these are used to illustrate its use and explain some of the conclusions derived from these experiences, mostly from a software engineer point of view.


Multi-agent systems (MAS) Cognitive agent Goal-driven agent Agent pattern Production systems ICARO 



This work has been partially supported by the project “Collaborative development of AAL solutions (ColoSAAL)”, with grant TIN2014-57028-R by the Spanish Ministry for Economy and Competitiveness.


  1. 1.
    Garijo, F.J., Bravo, S., Gonzalez, J., Bobadilla, E.: BOGAR_LN: an agent based component framework for developing multi-modal services using natural language. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA 2003. Lecture Notes in Artificial Intelligence (LNAI), vol. 3040, pp. 207–220. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-25945-9_21 CrossRefGoogle Scholar
  2. 2.
    Gascueña, J., Garijo, F.J., Fernández-Caballero, A., Gleizes, M.P., Machonin, A.: Deliberative control components for eldercare robot team cooperation. J. Intell. Fuzzy Syst. 28(1), 17–28 (2015)Google Scholar
  3. 3.
    Gascueña, J.M., Navarro, E., Fernández-Sotos, P., Fernández-Caballero, A., Pavón, J.: IDK and ICARO to develop multi-agent systems in support of ambient intelligence. J. Intell. Fuzzy Syst. 28(1), 3–15 (2015)Google Scholar
  4. 4.
    Lacouture, J., Gascueña, J.M., Gleizes, M.P., Glize, P., Garijo, F.J., Fernández-Caballero, A.: ROSACE: agent-based systems for dynamic task allocation in crisis management. In: Demazeau, Y., Müller, J.P., Corchado Rodríguez, J.M., Bajo Pérez, J. (eds.) PAAMS 2012: Advances in Intelligent and Soft Computing, vol. 155, pp. 255–259. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Georgé, J.P., Gleizes, M.P., Garijo, F.J., Noël, V., Arcangeli, J.P.: Selfadaptive coordination for robot teams accomplishing critical activities. In: Demazeau, Y., Dignum, F., Corchado, J.M., BajoPérez, J. (eds.) PAAMS 2010: Advances in Intelligent and Soft Computing, vol. 70, pp. 145–150. Springer, Heidelberg (2010)Google Scholar
  6. 6.
    Pax, R., Pavón, J.: Agent-based simulation of crowds in indoor scenarios. In: Novais, P., Camacho, D., Analide, C., El Fallah Seghrouchni, A., Badica, C. (eds.) IDC’2015. SCI, vol. 616, pp. 121–130. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-25017-5_12 CrossRefGoogle Scholar
  7. 7.
    Drools. Accessed 3 May 2016
  8. 8.
    Jess. Accessed 3 May 2016
  9. 9.
  10. 10.
    Corchado, J.M., Laza, R.: Constructing deliberative agents with case-based reasoning technology. Int. J. Intell. Syst. 18(12), 1227–1241 (2003)CrossRefGoogle Scholar
  11. 11.
    Camacho, D., Aler, R., Borrajo, D., Molina, J.M.: A multi-agent architecture for intelligent gathering systems. AI Commun. 18(1), 15–32 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Sánchez, N., Molina, J.M.: A multi-agent approach for provisioning of E-Services in U-Commerce environments. Internet Res. 20(3), 276–295 (2010)CrossRefGoogle Scholar
  13. 13.
    Braubach, L., Pokahr, A.: The jadex project: simulation. Multiagent Syst. Appl. 45, 107–128 (2013). doi: 10.1007/978-3-642-33323-1_5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Ingeniería del Software e Inteligencia ArtificialUniversidad Complutense MadridMadridSpain

Personalised recommendations