Skip to main content

Calibration of Microscopic Traffic Flow Simulation Models Using a Memetic Algorithm with Solis and Wets Local Search Chaining (MA-SW-Chains)

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10022)

Abstract

Traffic models require calibration to provide an adequate representation of the actual field conditions. This study presents the adaptation of a memetic algorithm (MA-SW-Chains) based on Solis and Wets local search chains, for the calibration of microscopic traffic flow simulation models. The effectiveness of the proposed MA-SW-Chains approach was tested using two vehicular traffic flow models (McTrans and Reno). The results were superior compared to two state-of-the-art approaches found in the literature: (i) a single-objective genetic algorithm that uses simulated annealing (GASA), and (ii) a stochastic approximation simultaneous perturbation algorithm (SPSA). The comparison was based on tuning time, runtime and the quality of the calibration, measured by the GEH statistic (which calculates the difference between the counts of real and simulated links) .

Keywords

  • Calibration
  • Local search chaining
  • Solis and wets
  • Traffic flow simulation
  • Single-objective optimization
  • Memetic algorithm

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   42.79
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   54.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hale, D.K., et al.: Optimization-based assisted calibration of traffic simulation models. Transp. Res. Part C Emerg. Technol. 55, 100–115 (2015)

    CrossRef  Google Scholar 

  2. Hollander, Y., Liu, R.: The principles of calibrating traffic microsimulation models. Transportation 35(3), 347–362 (2008)

    CrossRef  Google Scholar 

  3. Abdalhaq, B.K., Baker, M.I.A.: Using meta heuristic algorithms to improve traffic simulation. J. Algorithms 2(4), 110–128 (2014)

    Google Scholar 

  4. Kim, K.-O., Rilett, L.: Simplex-based calibration of traffic microsimulation models with intelligent transportation systems data. Transp. Res. Rec. J. Transp. Res. Board 1855, 80–89 (2003)

    CrossRef  Google Scholar 

  5. Park, B., Kamarajugadda, A.: Development and evaluation of a stochastic traffic signal optimization method. Int. J. Sustain. Transp. 1(3), 193–207 (2007)

    CrossRef  Google Scholar 

  6. “Brian” Park, B., Yun, I., Ahn, K.: Stochastic optimization for sustainable traffic signal control. Int. J. Sustain. Transp. 3(4), 263–284 (2009)

    CrossRef  Google Scholar 

  7. Chiappone, S., et al.: Traffic simulation models calibration using speed–density relationship: an automated procedure based on genetic algorithm. Expert Syst. Appl. 44, 147–155 (2016)

    CrossRef  Google Scholar 

  8. Korcek, P., Sekanina, L., Fucik, O.: Calibration of traffic simulation models using vehicle travel times. In: Sirakoulis, Georgios Ch., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 807–816. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  9. Lee, J.-B., Ozbay, K.: Calibration of a macroscopic traffic simulation model using enhanced simultaneous perturbation stochastic approximation methodology. In: Transportation Research Board 87th Annual Meeting (2008)

    Google Scholar 

  10. Balakrishna, R., Antoniou, C., Ben-Akiva, M., Koutsopoulos, H., Wen, Y.: Calibration of microscopic traffic simulation models: methods and application. Transp. Res. Rec. J. Transp. Res. Board 1999, 198–207 (2007). doi:10.3141/1999-21

    CrossRef  Google Scholar 

  11. Paz, A., Molano, V., Gaviria, C.: Calibration of corsim models considering all model parameters simultaneously. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE (2012)

    Google Scholar 

  12. Yuan, J., Ng, S.H., Tsui, K.L.: Calibration of stochastic computer models using stochastic approximation methods. IEEE Trans. Autom. Sci. Eng. 10(1), 171–186 (2013)

    CrossRef  Google Scholar 

  13. Paz, A., et al.: Calibration of traffic flow models using a memetic algorithm. Transp. Res. Part C Emerg. Technol. 55, 432–443 (2015)

    CrossRef  Google Scholar 

  14. Molina, D., Lozano, M., Herrera, F.: MA-SW-Chains: memetic algorithm based on local search chains for large scale continuous global optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC). IEEE (2010)

    Google Scholar 

  15. Li, X., et al.: 2015 IEEE Congress on Evolutionary Computation Competition on: Large Scale Global Optimization, p. 19. RMIT University (2015)

    Google Scholar 

  16. Alabert, A., et al.: No-Free-Lunch theorems in the continuum. Theor. Comput. Sci. 600, 98–106 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Solis, F.J., Wets, R.J.-B.: Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30 (1981)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. McTrans, CORSIM User’s Guide (2011)

    Google Scholar 

  19. Altiparmak, F., et al.: A steady-state genetic algorithm for multi-product supply chain network design. Comput. Ind. Eng. 56(2), 521–537 (2009)

    CrossRef  MathSciNet  Google Scholar 

  20. Molina, D., et al.: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains. Soft. Comput. 15(11), 2201–2220 (2011)

    CrossRef  Google Scholar 

  21. LaTorre, A., et al: Multiple offspring sampling in large scale global optimization. In: 2012 IEEE Congress on Evolutionary Computation (2012)

    Google Scholar 

  22. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work in this research study was supported by the University of Cauca (Popayan, Colombia) and the University of Nevada Las Vegas, United States. We are grateful to Mr. Colin McLachlan for his help translating the first version of this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cobos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Cobos, C. et al. (2016). Calibration of Microscopic Traffic Flow Simulation Models Using a Memetic Algorithm with Solis and Wets Local Search Chaining (MA-SW-Chains). In: Montes y Gómez, M., Escalante, H., Segura, A., Murillo, J. (eds) Advances in Artificial Intelligence - IBERAMIA 2016. IBERAMIA 2016. Lecture Notes in Computer Science(), vol 10022. Springer, Cham. https://doi.org/10.1007/978-3-319-47955-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47955-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47954-5

  • Online ISBN: 978-3-319-47955-2

  • eBook Packages: Computer ScienceComputer Science (R0)