Calibration of Microscopic Traffic Flow Simulation Models Using a Memetic Algorithm with Solis and Wets Local Search Chaining (MA-SW-Chains)

  • Carlos CobosEmail author
  • Carlos Daza
  • Cristhian Martínez
  • Martha Mendoza
  • Carlos Gaviria
  • Cristian Arteaga
  • Alexander Paz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10022)


Traffic models require calibration to provide an adequate representation of the actual field conditions. This study presents the adaptation of a memetic algorithm (MA-SW-Chains) based on Solis and Wets local search chains, for the calibration of microscopic traffic flow simulation models. The effectiveness of the proposed MA-SW-Chains approach was tested using two vehicular traffic flow models (McTrans and Reno). The results were superior compared to two state-of-the-art approaches found in the literature: (i) a single-objective genetic algorithm that uses simulated annealing (GASA), and (ii) a stochastic approximation simultaneous perturbation algorithm (SPSA). The comparison was based on tuning time, runtime and the quality of the calibration, measured by the GEH statistic (which calculates the difference between the counts of real and simulated links) .


Calibration Local search chaining Solis and wets Traffic flow simulation Single-objective optimization Memetic algorithm 



The work in this research study was supported by the University of Cauca (Popayan, Colombia) and the University of Nevada Las Vegas, United States. We are grateful to Mr. Colin McLachlan for his help translating the first version of this document.


  1. 1.
    Hale, D.K., et al.: Optimization-based assisted calibration of traffic simulation models. Transp. Res. Part C Emerg. Technol. 55, 100–115 (2015)CrossRefGoogle Scholar
  2. 2.
    Hollander, Y., Liu, R.: The principles of calibrating traffic microsimulation models. Transportation 35(3), 347–362 (2008)CrossRefGoogle Scholar
  3. 3.
    Abdalhaq, B.K., Baker, M.I.A.: Using meta heuristic algorithms to improve traffic simulation. J. Algorithms 2(4), 110–128 (2014)Google Scholar
  4. 4.
    Kim, K.-O., Rilett, L.: Simplex-based calibration of traffic microsimulation models with intelligent transportation systems data. Transp. Res. Rec. J. Transp. Res. Board 1855, 80–89 (2003)CrossRefGoogle Scholar
  5. 5.
    Park, B., Kamarajugadda, A.: Development and evaluation of a stochastic traffic signal optimization method. Int. J. Sustain. Transp. 1(3), 193–207 (2007)CrossRefGoogle Scholar
  6. 6.
    “Brian” Park, B., Yun, I., Ahn, K.: Stochastic optimization for sustainable traffic signal control. Int. J. Sustain. Transp. 3(4), 263–284 (2009)CrossRefGoogle Scholar
  7. 7.
    Chiappone, S., et al.: Traffic simulation models calibration using speed–density relationship: an automated procedure based on genetic algorithm. Expert Syst. Appl. 44, 147–155 (2016)CrossRefGoogle Scholar
  8. 8.
    Korcek, P., Sekanina, L., Fucik, O.: Calibration of traffic simulation models using vehicle travel times. In: Sirakoulis, Georgios Ch., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 807–816. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Lee, J.-B., Ozbay, K.: Calibration of a macroscopic traffic simulation model using enhanced simultaneous perturbation stochastic approximation methodology. In: Transportation Research Board 87th Annual Meeting (2008)Google Scholar
  10. 10.
    Balakrishna, R., Antoniou, C., Ben-Akiva, M., Koutsopoulos, H., Wen, Y.: Calibration of microscopic traffic simulation models: methods and application. Transp. Res. Rec. J. Transp. Res. Board 1999, 198–207 (2007). doi: 10.3141/1999-21 CrossRefGoogle Scholar
  11. 11.
    Paz, A., Molano, V., Gaviria, C.: Calibration of corsim models considering all model parameters simultaneously. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC). IEEE (2012)Google Scholar
  12. 12.
    Yuan, J., Ng, S.H., Tsui, K.L.: Calibration of stochastic computer models using stochastic approximation methods. IEEE Trans. Autom. Sci. Eng. 10(1), 171–186 (2013)CrossRefGoogle Scholar
  13. 13.
    Paz, A., et al.: Calibration of traffic flow models using a memetic algorithm. Transp. Res. Part C Emerg. Technol. 55, 432–443 (2015)CrossRefGoogle Scholar
  14. 14.
    Molina, D., Lozano, M., Herrera, F.: MA-SW-Chains: memetic algorithm based on local search chains for large scale continuous global optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC). IEEE (2010)Google Scholar
  15. 15.
    Li, X., et al.: 2015 IEEE Congress on Evolutionary Computation Competition on: Large Scale Global Optimization, p. 19. RMIT University (2015)Google Scholar
  16. 16.
    Alabert, A., et al.: No-Free-Lunch theorems in the continuum. Theor. Comput. Sci. 600, 98–106 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Solis, F.J., Wets, R.J.-B.: Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    McTrans, CORSIM User’s Guide (2011)Google Scholar
  19. 19.
    Altiparmak, F., et al.: A steady-state genetic algorithm for multi-product supply chain network design. Comput. Ind. Eng. 56(2), 521–537 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Molina, D., et al.: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-Chains. Soft. Comput. 15(11), 2201–2220 (2011)CrossRefGoogle Scholar
  21. 21.
    LaTorre, A., et al: Multiple offspring sampling in large scale global optimization. In: 2012 IEEE Congress on Evolutionary Computation (2012)Google Scholar
  22. 22.
    Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Carlos Cobos
    • 1
    Email author
  • Carlos Daza
    • 1
  • Cristhian Martínez
    • 1
  • Martha Mendoza
    • 1
  • Carlos Gaviria
    • 2
  • Cristian Arteaga
    • 2
  • Alexander Paz
    • 2
  1. 1.Universidad del CaucaPopayánColombia
  2. 2.University of NevadaLas VegasUSA

Personalised recommendations