Advertisement

Automatic Generation of Type-1 and Interval Type-2 Membership Functions for Prediction of Time Series Data

  • Andréia Alves dos Santos SchwaabEmail author
  • Silvia Modesto Nassar
  • Paulo José de Freitas Filho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10022)

Abstract

The use of type-1 or type-2 membership functions in fuzzy systems offers a wide range of research opportunities. In this aspect, there are neither formal recommendations, methods that can help to decide which type of membership function should be chosen nor has the process of generating these membership functions been formalized. Against this background, this paper describes a study comparing the results of employing both a Genetic Algorithm and a Simulated Annealing for automatic generation of type-1 and interval type-2 membership functions. The paper also describes tests with different degrees of uncertainty inherent both to the input data and the fuzzy system rules. Experiments were conducted to predict the Mackey-Glass time series and the results were verified using statistical tests. The data obtained from statistical analysis can be used to determine which type of membership function is most appropriate for the problem.

Keywords

Genetic algorithms Interval Type-2 fuzzy sets Membership functions Prediction of time series data Simulated annealing 

References

  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abd, K., Abhary, K., Marian, R.: Development of a fuzzy-simulation model of scheduling robotic flexible assembly cells. J. Comput. Sc. 9(12), 1761–1768 (2013)CrossRefGoogle Scholar
  3. 3.
    Amindoust, A., Ahmed, S., Saghafinia, A., Bahreininejad, A.: Sustainable supplier selection: a ranking model based on fuzzy inference system. Appl. Soft Comput. 12(6), 1668–1677 (2012)CrossRefGoogle Scholar
  4. 4.
    Chrysafiadi, K., Virvou, M.: Evaluating the integration of fuzzy logic into the student model of a web-based learning environment. Expert Syst. Appl. 39(18), 13127–13134 (2012)CrossRefGoogle Scholar
  5. 5.
    Frantti, T., Majanen, M.: An expert system for real-time traffic management in wireless local area networks. Expert Syst. Appl. 41(10), 4996–5008 (2014)CrossRefGoogle Scholar
  6. 6.
    Laasri, E.H.A., Akhouayri, E.-S., Agliz, D., Zonta, D., Atmani, A.: A fuzzy expert system for automatic seismic signal classification. Expert Syst. Appl. 42(3), 1013–1027 (2015)CrossRefGoogle Scholar
  7. 7.
    Onieva, E., Milanés, V., Villagrá, J., Pérez, J., Godoy, J.: Genetic optimization of a vehicle fuzzy decision system for intersections. Expert Syst. Appl. 39(18), 13148–13157 (2012)CrossRefGoogle Scholar
  8. 8.
    Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, New Jersey (1995)zbMATHGoogle Scholar
  9. 9.
    Ross, T.J.: Fuzzy Logic with Engineering Applications, 3rd edn. Wiley, UK (2010)CrossRefGoogle Scholar
  10. 10.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning–I. Inf. Sci. 8, 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sharifian, A., Sharifian, S.: A new power system transient stability assessment method based on type-2 fuzzy neural network estimation. Int. J. Electr. Power Energy Syst. 64, 71–87 (2015)CrossRefGoogle Scholar
  12. 12.
    Pan, Y., Li, H., Zhou, Q.: Fault detection for interval type-2 fuzzy systems with sensor nonlinearities. Neurocomputing 145, 488–494 (2014)CrossRefGoogle Scholar
  13. 13.
    Murthy, C., Varma, K.A., Roy, D.S., Mohanta, D.K.: Reliability evaluation of phasor measurement unit using type-2 fuzzy set theory. IEEE Syst. J. 8(4), 1302–1309 (2014)CrossRefGoogle Scholar
  14. 14.
    Bi, Y., Srinivasan, D., Lu, X., Sun, Z., Zeng, W.: Type-2 fuzzy multi-intersection traffic signal control with differential evolution optimization. Expert Syst. Appl. 41(16), 7338–7349 (2014)CrossRefGoogle Scholar
  15. 15.
    Melin, P., Castillo, O.: A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Appl. Soft Comput. 21, 568–577 (2014)CrossRefGoogle Scholar
  16. 16.
    Mendel, J.M.: A quantitative comparison of interval type-2 and type-1 fuzzy logic systems: first results. In: IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8. Barcelona (2010)Google Scholar
  17. 17.
    Linda, O., Manic, M.: Comparative analysis of type-1 and type-2 fuzzy control in context of learning behaviors for mobile robotics. In: Proceedings of the 36th Annual Conference of the IEEE Industrial Electronics Society (IECON 2010),. Glendale, AZ, pp. 1092–1098 (2010)Google Scholar
  18. 18.
    Linda, O., Manic, M.: Evaluating uncertainty resiliency of type-2 fuzzy logic controllers for parallel delta robot. In: 4th International Conference on Human System Interaction, pp. 91–97. Yokohama (2011)Google Scholar
  19. 19.
    Almaraashi, M.: Learning of Type-2 Fuzzy Logic Systems using Simulated Annealing. De Montfort University (2012)Google Scholar
  20. 20.
    Sanchez, M.A., Castillo, O., Castro, J.R.: Information granule formation via the concept of uncertainty-based information with interval type-2 fuzzy sets representation and Takagi-Sugeno-Kang consequents optimized with Cuckoo search. Appl. Soft Comput. 27, 602–609 (2015)CrossRefGoogle Scholar
  21. 21.
    Martínez-Soto, R., Castillo, O., Aguilar, L.T., Díaz, A.R.: A hybrid optimization method with PSO and GA to automatically design type-1 and type-2 fuzzy logic controllers. Int. J. Mach. Learn. Cybern. 6(2), 175–196 (2015)CrossRefGoogle Scholar
  22. 22.
    Maldonado, Y., Castillo, O., Melin, P.: A multi-objective optimization of type-2 fuzzy control speed in FPGAs. Appl. Soft Comput. 24, 1164–1174 (2014)CrossRefGoogle Scholar
  23. 23.
    Sörensen, K., Glover, F.: Metaheuristics. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Science, 3rd edn. Springer, Boston (2013)Google Scholar
  24. 24.
    Shill, P.C., Akhand, M.A.H., Murase, K.: Simultaneous design of membership functions and rule sets for type-2 fuzzy controllers using genetic algorithms. In: 14th International Conference on Computer and Information Technology, Dhaka, pp. 554–559 (2011)Google Scholar
  25. 25.
    Maldonado, Y., Castillo, O., Melin, P.: Optimization of membership functions for an incremental fuzzy PD control based on genetic algorithms. Stud. Comput. Intell. 318, 195–211 (2010)Google Scholar
  26. 26.
    Hidalgo, D., Melin, P., Castillo, O.: Optimal design of type-2 fuzzy membership functions using genetic algorithms in a partitioned search space. In: IEEE International Conference on Granular Computing, San Jose, pp. 212–216 (2010)Google Scholar
  27. 27.
    Herman, N.S., Yusuf, I., Shamsuddin, S.M.b.H.: Genetic algorithms and designing membership function in fuzzy logic controllers. In: World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), Coimbatore, pp. 1753–1758 (2009)Google Scholar
  28. 28.
    Ghaemi, M., Akbarzadeh-T, M., Jalaeian-F, M.: Adaptive interval type-2 fuzzy PI sliding mode control with optimization of membership functions using genetic algorithm. In: 2nd International eConference on Computer and Knowledge Engineering (ICCKE), Mashhad, pp. 123–128 (2012)Google Scholar
  29. 29.
    Patri, A., Nayak, A.: A fuzzy-based localization in range-free wireless sensor network using genetic algorithm & Sinc membership function. In: International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Chennai, pp. 140–145 (2013)Google Scholar
  30. 30.
    Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)CrossRefGoogle Scholar
  31. 31.
    Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  32. 32.
    Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)CrossRefGoogle Scholar
  33. 33.
    Mendel, J.M.: Fuzzy Sets for Words: Why Type-2 Fuzzy Sets Should be Used and How They Can be Used. IEEE-FUZZ (2004) tutorial. http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/Mendel.pdf
  34. 34.
    Castellano, G., Fanelli, A.M., Mencar, C.: Design of transparent Mamdani fuzzy inference systems. In: Abraham, A., Köppen, M., Franke, K. (eds.) Design and Application of Hybrid Intelligent Systems, pp. 468–476. IOS Press, The Netherlands (2003)Google Scholar
  35. 35.
    Kasabov, N., Song, Q.: DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)CrossRefGoogle Scholar
  36. 36.
    Angelov, P., Filev, D.: An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. 34, 484–498 (2004)CrossRefGoogle Scholar
  37. 37.
    Serir, L., Ramasso, E., Nectoux, P., Zerhouni, N.: E2GKpro: an evidential evolving multi-modeling approach for system behavior prediction with applications. Mech. Syst. Signal Process. 37, 213–228 (2013)CrossRefGoogle Scholar
  38. 38.
    Wagner, C.: Juzzy - a Java based toolkit for type-2 fuzzy logic. In: IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), pp. 45–52. Singapore (2013)Google Scholar
  39. 39.
    Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. Springer, London (2007)zbMATHGoogle Scholar
  40. 40.
    Wang, L.-X.: The WM method completed: a flexible fuzzy system approach to data mining. IEEE Trans. Fuzzy Syst. 11(6), 768–782 (2013)CrossRefGoogle Scholar
  41. 41.
    Wang, L.-X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  43. 43.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Andréia Alves dos Santos Schwaab
    • 1
    Email author
  • Silvia Modesto Nassar
    • 1
  • Paulo José de Freitas Filho
    • 1
  1. 1.Federal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations