Early Prediction of Severe Maternal Morbidity Using Machine Learning Techniques

  • Eugenia Arrieta Rodríguez
  • Francisco Edna Estrada
  • William Caicedo Torres
  • Juan Carlos Martínez SantosEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10022)


Severe Maternal Morbidity is a public health issue. It may occur during pregnancy, delivery, or puerperium due to conditions (hypertensive disorders, hemorrhages, infections and others) that put in risk the women’s or baby’s life. These conditions are really difficult to detect at an early stage. In response to the above, this work proposes using several machine learning techniques, which are considered most relevant in a bio-medical setting, in order to predict the risk level for Severe Maternal Morbidity in patients during pregnancy. The population studied correspond to pregnant women receiving prenatal care and final attention at E.S.E Clínica de Maternidad Rafael Calvo in Cartagena, Colombia. This paper presents the preliminary results of an ongoing project, as well as methods and materials considered for the construction of the learning models.


Severe maternal morbidity Machine learning Logistic regression 



Special thanks for their cooperation to the High-Performance Computing Laboratory (HPCLab) at Universidad Tecnológica de Bolívar and to research group on maternal safety of Center of research for maternal health, Perinatal and women at E.S.E Clińica de Maternidad Rafael Calvo.


  1. 1.
    Carty, D.M., Siwy, J., Brennand, J.E., Zürbig, P., Mullen, W., Franke, J., McCulloch, J.W., North, R.A., Chappell, L.C., Mischak, H., et al.: Urinary proteomics for prediction of preeclampsia. Hypertension 57(3), 561–569 (2011)CrossRefGoogle Scholar
  2. 2.
    Casal, J., Mateu, E.: Tipos de muestreo. Rev. Epidem. Med. Prev 1(1), 3–7 (2003)Google Scholar
  3. 3.
    Duran, M.E.M., García, O.E.P., CArey, A.C., Bonilla, H.Q., Espitia, N.C.C., Barros, E.C.: Protocolo de vigilancia en salud pública morbilidad materna extremaGoogle Scholar
  4. 4.
    Farran, B., Channanath, A.M., Behbehani, K., Thanaraj, T.A.: Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from kuwaita cohort study. BMJ Open 3(5), e002457 (2013)CrossRefGoogle Scholar
  5. 5.
    Haaga, J.G., Wasserheit, J.N., Tsui, A.O., et al.: Reproductive Health in Developing Countries: Expanding Dimensions, Building Solutions. National Academies Press, Washington, D.C. (1997)Google Scholar
  6. 6.
    Mariño Martínez, C.A., Fiesco, V., Carolina, D., et al.: Caracterización de la morbilidad materna extrema en el Instituto Materno Infantil-Hospital la Victoria/Characterization of extreme morbidity disease in the Instituto Materno Infantil-Hospital la Victoria. Ph.D. thesis, Universidad Nacional de ColombiaGoogle Scholar
  7. 7.
    Morales-Osorno, B., Martínez, D.M., Cifuentes-Borrero, R.: Extreme maternal morbidity in Clinica Rafael Uribe Uribe, Cali, Colombia, from January 2003 to May 2006. Revista Colombiana de Obstetricia y Ginecología 58(3), 184–188 (2007)Google Scholar
  8. 8.
    Nanda, S., Savvidou, M., Syngelaki, A., Akolekar, R., Nicolaides, K.H.: Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat. Diagn. 31(2), 135–141 (2011)CrossRefGoogle Scholar
  9. 9.
    Neocleous, C.K., Anastasopoulos, P., Nikolaides, K.H., Schizas, C.N., Neokleous, K.C.: Neural networks to estimate the risk for preeclampsia occurrence. In: International Joint Conference on Neural Networks, IJCNN 2009, pp. 2221–2225. IEEE (2009)Google Scholar
  10. 10.
    Organization, W.H., UNICEF.: Revised 1990 estimates of maternal mortality: a new approach. World Health Organization (1996)Google Scholar
  11. 11.
    Park, F.J., Leung, C.H., Poon, L.C., Williams, P.F., Rothwell, S.J., Hyett, J.A.: Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy. Aust. N. Z. J. Obstet. Gynaecol. 53(6), 532–539 (2013)CrossRefGoogle Scholar
  12. 12.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Poon, L.C., Kametas, N.A., Maiz, N., Akolekar, R., Nicolaides, K.H.: First-trimester prediction of hypertensive disorders in pregnancy. Hypertension 53(5), 812–818 (2009)CrossRefGoogle Scholar
  14. 14.
    Rojas, J.A., Cogollo, M., Miranda, J.E., Ramos, E.C., Fernández, J.C., Bello, A.M.: Morbilidad materna extrema en cuidados intensivos obstétricos. Cartagena (Colombia) 2006–2008 maternal near miss in obstetric critical care. Cartagena, Colombia, 2006–2008. Revista Colombiana de Obstetricia y Ginecología 62(2), 131–140 (2011)Google Scholar
  15. 15.
    de la Salud, O.P.: Clasificación estadística internacional de enfermedades y problemas relacionados con la salud: décima revisión: CIE-10. Pan American Health Org (1995)Google Scholar
  16. 16.
    de Vigilancia, S.: Control en salud pública (sivigila). Informe de Intoxicaciones por plaguicidas. Instituto Nacional de Salud, INS. Bogotá, Colombia (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Eugenia Arrieta Rodríguez
    • 1
  • Francisco Edna Estrada
    • 1
  • William Caicedo Torres
    • 2
  • Juan Carlos Martínez Santos
    • 2
    Email author
  1. 1.E.S.E Clínica de Maternidad Rafael CalvoCartagenaColombia
  2. 2.Universidad Tecnológica de BolívarCartagenaColombia

Personalised recommendations