Advertisement

Anomalies Detection in the Behavior of Processes Using the Sensor Validation Theory

  • Pablo H. IbargüengoytiaEmail author
  • Uriel A. García
  • Alberto Reyes
  • Mónica Borunda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10022)

Abstract

Behavior can be defined as combination of variable’s values according to external inputs or environmental changes. This definition can be applied to persons, equipment, social systems or industrial processes. This paper proposes a probabilistic mechanism to represent the behavior of industrial equipment and an algorithm to identify deviations to this behavior. The anomaly detection mechanisms, together with the sensor validation theory are combined to propose an efficient manner to diagnose industrial equipment. A case study is presented with the failure identification of a wind turbine. The diagnosis is conducted when detecting deviations to the turbine normal behavior.

Keywords

Anomaly detection Model of behavior Bayesian networks Wind turbines 

Notes

Acknowledgements

This work is a preliminary result of the P12 project of the Mexican Center of Innovation in Energy (CEMIE-Eólico), partially sponsored by Fund (FSE) CONACYT-SENER Energy Sustainability, and at the IIE, under the project 14629. Authors also thank the anonymous referees for their insightful comments.

References

  1. 1.
    Hugin expert, hugin expert A/S. Aalborg, Denmark (2000)Google Scholar
  2. 2.
    Andersen, S.K., Olesen, K.G., Jensen, F.V., Jensen, F.: Hugin: a shell for building bayesian belief universes for expert systems. In: Proceedings of the Eleventh Joint Conference on Artificial Intelligence, IJCAI, pp. 1080–1085, Detroit, Michigan, USA, 20–25 August 1989Google Scholar
  3. 3.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. Technical report TR 07-107, University of Minnesota, USA (2007)Google Scholar
  4. 4.
    Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge based redundancy- a survey and some new results. Automatica 26, 459–470 (1990)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ibargüengoytia, P.H., Sucar, L.E., Vadera, S.: Real time intelligent sensor validation. IEEE Trans. Power Syst. 16(4), 770–775 (2001)CrossRefGoogle Scholar
  7. 7.
    Ibargüengoytia, P.H., Vadera, S., Sucar, L.E.: A probabilistic model for information and sensor validation. Comput. J. 49(1), 113–126 (2006)CrossRefGoogle Scholar
  8. 8.
    Márquez, F.P.G., Tobias, A.M., Pérez, J.M.P., Papaelias, M.: Condition monitoring of wind turbines: techniques and methods. Renew. Energy 46, 169–178 (2012)CrossRefGoogle Scholar
  9. 9.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)zbMATHGoogle Scholar
  10. 10.
    Schlechtingen, M., Santos, I.F., Achiche, S.: Wind turbine condition monitoring based on scada data using normal behavior models. Part 1: system description. Appl. Soft Comput. 13, 259–270 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhou, A., Yu, D., Zhang, W.: A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA. Adv. Eng. Inform. 32, 255–270 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Pablo H. Ibargüengoytia
    • 1
    Email author
  • Uriel A. García
    • 1
  • Alberto Reyes
    • 1
  • Mónica Borunda
    • 1
  1. 1.Instituto de Investigaciones EléctricasCuernavacaMexico

Personalised recommendations