Advertisement

A Machine Learning Model for Triage in Lean Pediatric Emergency Departments

  • William Caicedo-TorresEmail author
  • Gisela García
  • Hernando Pinzón
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10022)

Abstract

High demand periods and under-staffing due to financial constraints cause Emergency Departments (EDs) to frequently exhibit over-crowding and slow response times to provide adequate patient care. In response, Lean Thinking has been applied to help alleviate some of these issues and improve patient handling, with success. Lean approaches in EDs include separate patient streams, with low-complexity patients treated in a so-called Fast Track, in order to reduce total waiting time and to free-up capacity to treat more complicated patients in a timely manner. In this work we propose the use of Machine Learning techniques in a Lean Pediatric ED to correctly predict which patients should be admitted to the Fast Track, given their signs and symptoms. Charts from 1205 patients of the emergency department of Hospital Napoleón Franco Pareja in Cartagena - Colombia, were used to construct a dataset and build several predictive models. Validation and test results are promising and support the validity of this approach and further research on the subject.

Keywords

Machine learning Triage Emergency department Lean Fast track Neural networks SVM Logistic regression PCA 

References

  1. 1.
    Aplin, S., Baines, D., DE Lima, J.: Use of the ASA physical status grading system in pediatric practice. Paediatr. Anaesth. 17(3), 216–222 (2007)CrossRefGoogle Scholar
  2. 2.
    Beyer, J.E., Turner, S.B., Jones, L., Young, L., Onikul, R., Bohaty, B.: The alternate forms reliability of the Oucher pain scale. Pain Manag. Nurs. 6(1), 10–17 (2005)CrossRefGoogle Scholar
  3. 3.
    Bonadio, W.A., Hennes, H., Smith, D., Ruffing, R., Melzer-Lange, M., Lye, P., Isaacman, D.: Reliability of observation variables in distinguishing infectious outcome of febrile young infants. Pediatr. Infect. Dis. J. 12(2), 111–114 (1993)CrossRefGoogle Scholar
  4. 4.
    Carrol, E., Riordan, F., Thomson, A., Sills, J., Hart, C.: The role of the Glasgow meningococcal septicaemia prognostic score in the emergency management of meningococcal disease. Arch. Dis. Child. 81(3), 278 (1999). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1718049/ Google Scholar
  5. 5.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). http://dx.doi.org/10.1007/BF00994018 Google Scholar
  6. 6.
    Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., Zupan, B.: Orange: data mining toolbox in python. J. Mach. Learn. Res. 14, 2349–2353 (2013). http://jmlr.org/papers/v14/demsar13a.html
  7. 7.
    Ferres, J.: Comparison of two nebulized treatments in wheezing infants. Eur. Respir. J. 1, 306 (1988)Google Scholar
  8. 8.
    FitzGerald, G.: Triage revisited. Emerg. Med. 10(4), 291–293 (1998). http://dx.doi.org/10.1111/j.1442-2026.1998.tb00694.x Google Scholar
  9. 9.
    Herndon, R.: Handbook of Neurologic Rating Scales, 2nd edn. Demos Medical Publishing, New York (2006). http://books.google.com.co/books?id=w1yPmehSZ2cC
  10. 10.
    Holden, R.J.: Lean thinking in emergency departments: a critical review. Ann. Emerg. Med. 57(3), 265–278 (2010). http://dx.doi.org/10.1016/j.annemergmed.2010.08.001 Google Scholar
  11. 11.
    Huppler, A.R., Eickhoff, J.C., Wald, E.R.: Performance of low-risk criteria in the evaluation of young infants with fever: review of the literature. Pediatrics 125(2), 228–233 (2010). http://pediatrics.aappublications.org/content/125/2/228 Google Scholar
  12. 12.
    Ieraci, S., Digiusto, E., Sonntag, P., Dann, L., Fox, D.: Streaming by case complexity: evaluation of a model for emergency department fast track. Emerg. Med. Australas. 20(3), 241–249 (2008). http://dx.doi.org/10.1111/j.1742-6723.2008.01087.x Google Scholar
  13. 13.
    Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics. Springer, Berlin (2002). http://books.google.com.co/books?id=TtVF-ao4fI8C
  14. 14.
    Kelly, A.M., Bryant, M., Cox, L., Jolley, D.: Improving emergency department efficiency by patient streaming to outcomes-based teams. Aust. Health Rev. 31(1), 16–21 (2007). http://www.publish.csiro.au/paper/AH070016 Google Scholar
  15. 15.
    McCarthy, P.L., Sharpe, M.R., Spiesel, S.Z., Dolan, T.F., Forsyth, B.W., DeWitt, T.G., Fink, H.D., Baron, M.A., Cicchetti, D.V.: Observation scales to identify serious illness in febrile children. Pediatrics 70(5), 802–809 (1982). http://pediatrics.aappublications.org/content/70/5/802
  16. 16.
    McCullagh, P., Nelder, J.: Generalized Linear Models, 2nd edn. Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, Abingdon-on-Thames (1989). http://books.google.co.uk/books?id=h9kFH2_FfBkC
  17. 17.
    Mintegui, R.S., Sanchez, E.J., Benito, F.J., Angulo, B.P., Gastiasoro, C.L., Ortiz, A.A.: Usefulness of oxygen saturation in the assessment of children with moderated laryngitis. An. Esp. Pediatr. 45(3), 261–263 (1996)Google Scholar
  18. 18.
    Ng, D., Vail, G., Thomas, S., Schmidt, N.: Applying the lean principles of the Toyota production system to reduce wait times in the emergency department. CJEM 12(1), 50–57 (2010)CrossRefGoogle Scholar
  19. 19.
    Paganini, H., de Santolaya, P., Álvarez, M., Ara\({\tilde{n}}\)a Rosaínz, M.D.J., Arteaga Bonilla, R., Bonilla, A., Caniza, M., Carlesse, F., López, P., Due\({\tilde{n}}\)aas de Chicas, L., de León, T., del Pont, J.M., Melgar, M., Naranjo, L., Odio, C., Rodríguez, M., Scopinaro, M.: Diagnóstico y tratamiento de la neutropenia febril en ni\({\tilde{n}}\)os con cáncer. consenso de la sociedad latinoamericana de infectología pediátrica. Revista chilena de infectología 28, 10–38 (2011). http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182011000400003&nrm=iso
  20. 20.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Parallel distributed processing: explorations in the microstructure of cognition. In: Learning Internal Representations by Error Propagation, vol. 1., pp. 318–362. MIT Press, Cambridge (1986). http://dl.acm.org/citation.cfm?id=104279.104293
  21. 21.
    Scarfone, R.J., Fuchs, S.M., Nager, A.L., Shane, S.A.: Controlled trial of oral prednisone in the emergency department treatment of children with acute asthma. Pediatrics 92(4), 513–518 (1993)Google Scholar
  22. 22.
    Velasco-Pérez, G.: Escalera analgésica en pediatría. Acta pediátrica de México 35, 249–255 (2014). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0186-23912014000300011&nrm=iso
  23. 23.
    Womack, J.P., Jones, D.T., Roos, D.: The Machine That Changed the World: The Story of Lean Production. The MIT International Motor Vehicle Program. HarperCollins, New York (1991). https://books.google.de/books?id=Jz4zog27W7gC

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • William Caicedo-Torres
    • 1
    Email author
  • Gisela García
    • 1
  • Hernando Pinzón
    • 2
  1. 1.Department of Computer ScienceUniversidad Tecnológica de BolívarCartagenaColombia
  2. 2.Hospital Infantil Napoleón Franco ParejaCartagenaColombia

Personalised recommendations