Advertisement

Towards an Integration of Workflows and Clinical Guidelines: A Case Study

  • Paolo TerenzianiEmail author
  • Salvatore Femiano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10022)

Abstract

The integration of workflows and guidelines modeling healthcare processes is a hot topic of research in Artificial Intelligence in Medicine, and is likely to provide a major advance in the IT support to healthcare [1]. In this position paper, we use a case study in order to identify commonalities and differences between workflows and guidelines. As a result of the analysis, we argue in favor of an integrated architecture in which workflow and guideline models are independently managed and supported, while integration is obtained through a mapping onto a system-internal format, where traditional AI-style inferential capabilities are supported.

Keywords

Knowledge representation Clinical practice guidelines Workflows Integration System architecture 

References

  1. 1.
    Lenz, R., Reicher, M.: IT support for healthcare processes – premises, challenges, perspectives. Data Knowl. Eng. 61, 39–58 (2007)CrossRefGoogle Scholar
  2. 2.
    Ten Teije, A., Miksch, S., Lucas, P. (Eds.): Computer-based medical guidelines and protocols: a primer and current trends. In: Studies in Health Technology and Informatics, vol. 139 (2008)Google Scholar
  3. 3.
    Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Inf. 46(4), 744–763 (2013)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Fridsma, D.B.: Special issue on workflow management and clinical guidelines. JAMIA 22(1), 1–80 (2001)Google Scholar
  6. 6.
    Fox, J., Johns, N., Rahmanzadeh, A., Thomson, R.: Disseminating medical knowledge: the PROforma approach. Artif. Intell. Med. 14, 157–181 (1998)CrossRefGoogle Scholar
  7. 7.
    Quaglini, S., Stefanelli, M., Cavallini, A., Micieli, G., Fassino, C., Mossa, C.: GL-based careflow systems. Artif. Intell. Med. 20(1), 5–22 (2000)CrossRefGoogle Scholar
  8. 8.
    Mulyar, N., Pesic, M., van der Aalst, W.M.P., Peleg, M.: Towards the flexibility in clinical guideline modelling languages. BPM Center report BPM-07-04 (2007). BPMcenter.org
  9. 9.
    Thao, L.L., Reichert, M., Dadam, P.: Integration and verification of semantic constraints in adaptive process management systems. Data Knowl. Eng. 64, 3–23 (2008)CrossRefGoogle Scholar
  10. 10.
    Terenziani, P., Molino, G., Torchio, M.: A modular approach for representing and executing clinical guidelines. Artif. Intell. Med. 23, 249–276 (2001)CrossRefGoogle Scholar
  11. 11.
    Terenziani, P., Montani, S., Bottrighi, A., Molino, G., Torchio, M.: Applying artificial intelligence to clinical guidelines: the GLARE approach. In: Computer-Based Medical Guidelines and Protocols: A Primer and Current Trends, in Studies in Health Technology and Informatics, vol. 139, pp. 273–282 (2008)Google Scholar
  12. 12.
    Femiano, S.: Analysis and restructuring processes of patient care in complex health systems. University of Turin, Ph.D. dissertation (2009)Google Scholar
  13. 13.
    Veronesi, A., Crivellari, D., Magri, M.D., Cartei, G., Mansutti, M., Foladore, S., Monfardini, S.: Vinorelbine treatment of advanced non-small cell lung cancer with special emphasis on elderly patients. Eur. J. Cancer 32(10), 1809–1811 (1996)CrossRefGoogle Scholar
  14. 14.
    iGrafx.com: Unlocking the Potential of Business Process Management. http://portal.igrafx.com/downloads/documents/bpm_whitepaper.pdf
  15. 15.
    Terenziani, P., Montani, S., Bottrighi, A., Torchio, M., Molino, G., Anselma, L., Correndo, G.: Applying artificial intelligence to clinical guidelines: the GLARE approach. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Anselma, L., Terenziani, P., Montani, S., Bottrighi, A.: Towards a comprehensive treatment of repetitions, periodicity and temporal constraints in clinical guidelines. Artif. Intell. Med. 38(2), 171–195 (2006)CrossRefGoogle Scholar
  17. 17.
    Console, L., Terenziani, P.: Efficient processing of queries and assertions about qualitative and quantitative temporal constraints. Comput. Intell. 15(4), 442–465 (1999)CrossRefGoogle Scholar
  18. 18.
    Bottrighi, A., Giordano, L., Molino, G., Montani, S., Terenziani, P., Torchio, M.: Adopting model checking techniques for clinical guidelines verification. Artif. Intell. Med. 48(1), 1–19 (2010)CrossRefGoogle Scholar
  19. 19.
    Anselma, L., Bottrighi, A., Molino, G., Montani, S., Terenziani, P., Torchio, M.: Supporting knowledge-based decision making in the medical context: the GLARE approach. Int. J. Knowl.-Based Organ. 1(1), 42–60 (2011)CrossRefGoogle Scholar
  20. 20.
    van der Aalst, W.M.P.: The application of petri nets to workflow management. J. Circuits Syst. Comput. 8(1), 21–66 (1998)CrossRefGoogle Scholar
  21. 21.
    Grando, M.A., Glasspool, D.W., Fox, J.: Petri nets as a formalism for comparing expressiveness of workflow-based clinical guideline languages. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management Workshops. LNBIP, vol. 17, pp. 348–360. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Beccuti, M., Bottrighi, A., Franceschinis, G., Montani, S., Terenziani, P.: Modeling clinical guidelines through petri nets. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds.) AIME 2009. LNCS, vol. 5651, pp. 61–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed colored nets for symmetric modelling applications. IEEE Trans. Comput. 42(11), 1343–1360 (1993)CrossRefGoogle Scholar
  24. 24.
    Leone, N., Eiter, T., Faber, W., Fink, M., Gottlob, G., Greco, G.: Boosting information integration: the INFOMIX system. In: SEBD 2005, pp. 55–66Google Scholar
  25. 25.
    Leone, N., Greco, G., Ianni, G., Lio, V., Terracina, G., Eiter, T., Faber, W., Fink, M., Gottlob, G., Rosati, R., Lembo, D., Lenzerini, M., Ruzzi, M., Kalka, E., Nowicki, B., Staniszkis, W.: The INFOMIX system for advanced integration of incomplete and inconsistent data. In: SIGMOD Conference 2005, pp. 915–917Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.DISIT – Universita’ del Piemonte Orientale “Amedeo Avogadro”AlessandriaItaly
  2. 2.Dipartimento di Scienze della Sanità Pubblica e PediatricheUniv. di TorinoTurinItaly

Personalised recommendations