Skip to main content

The Frequency-Following Response: A Window into Human Communication

  • Chapter
  • First Online:
The Frequency-Following Response

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 61))

Abstract

The frequency-following response (FFR) is a measure of synchronous sound-evoked neural activity that reveals the integrity of sound processing in the brain. Studies of the FFR are organized around two intertwining themes: learning and everyday communication. These studies tie into a conceptual framework wherein making sense of sound is fundamental to everyday life and is at the intersection of cognitive, sensorimotor, and reward networks. Understanding how well an individual listener processes sound provides a snapshot of auditory function and its impact on everyday communication skills. This chapter provides an overview of FFR research and contends that the FFR is a measure that reflects an individual’s past and potential in sound. Despite diverse terminology in the field, it is argued that FFR provides a good umbrella term for these biological approaches. A brief historical perspective illustrates how FFR has a longstanding history in auditory neuroscience and has addressed many basic and clinical questions in hearing. The FFR is on its way to becoming a mainstream tool in neuroscience. Perhaps most exciting is the potential for use in brain screening to assess hearing in newborns to evaluate risk for communication impairments, setting the stage for early interventions that offset a life spent struggling to learn and communicate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian, E. D. (1926). The impulses produced by sensory nerve endings. The Journal of Physiology, 61(1), 49–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aiken, S. J., & Picton, T. W. (2008). Envelope and spectral frequency-following responses to vowel sounds. Hearing Research, 245(1), 35–47.

    Article  PubMed  Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2012). Aging affects neural precision of speech encoding. The Journal of Neuroscience, 32(41), 14156–14164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2013). Auditory brain stem response to complex sounds predicts self-reported speech-in-noise performance. Journal of Speech, Language, and Hearing Research, 56, 31–43.

    Article  PubMed  Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2015). Development of subcortical speech representation in human infants. The Journal of the Acoustical Society of America, 137(6), 3346–3355.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13(2), 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Banai, K., Hornickel, J., Skoe, E., Nicol, T., et al. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19, 2699–2707.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharadwaj, H. M., & Shinn-Cunningham, B. G. (2014). Rapid acquisition of auditory subcortical steady state responses using multichannel recordings. Clinical Neurophysiology, 125(9), 1878–1888.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boudreau, J. C. (1965). Neural volleying: Upper frequency limits detectable in the auditory system. Nature, 208, 1237–1238.

    Article  CAS  PubMed  Google Scholar 

  • Buytendijk, F. (1910). On the negative variation of the nervus acusticus caused by a sound. Proceedings of the Royal Netherlands Academy of Arts and Sciences (KNAW), 13, 1910–1911.

    Google Scholar 

  • Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brain stem response to speech: Neural origins and plasticity. Psychophysiology, 47(2), 236–246. Doi:10.1111/j.1469-8986.2009.00928.x

  • Coffey, E. B., Herholz, S. C., Chepesiuk, A. M., Baillet, S., & Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nature Communications, 7, 11070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham, J., Nicol, T., King, C., Zecker, S. G., & Kraus, N. (2002). Effects of noise and cue enhancement on neural responses to speech in auditory midbrain, thalamus and cortex. Hearing Research, 169(1), 97–111.

    Article  PubMed  Google Scholar 

  • Cunningham, J., Nicol, T., Zecker, S. G., Bradlow, A., & Kraus, N. (2001). Neurobiologic responses to speech in noise in children with learning problems: Deficits and strategies for improvement. Clinical Neurophysiology, 112(5), 758–767.

    Article  CAS  PubMed  Google Scholar 

  • Dallos, P. (1992). The active cochlea. The Journal of Neuroscience, 2(12), 4575–4585.

    Google Scholar 

  • Derbyshire, A. J., & Davis, H. (1935). The action potentials of the auditory nerve. American Journal of Physiology-Legacy Content, 113(2), 476–504.

    Google Scholar 

  • Dolphin, W., & Mountain, D. (1992). The envelope following response: Scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals. Hearing Research, 58(1), 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Easwar, V., Purcell, D. W., Aiken, S. J., Parsa, V., & Scollie, S. D. (2015). Effect of stimulus level and bandwidth on speech-evoked envelope following responses in adults with normal hearing. Ear and Hearing, 36(6), 619–634.

    Article  PubMed  Google Scholar 

  • Faingold, C. L., & Caspary, D. M. (1979). Frequency-following responses in primary auditory and reticular formation structures. Electroencephalography and Clinical Neurophysiology, 47(1), 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Galbraith, G. C. (1994). Two-channel brain-stem frequency-following responses to pure tone and missing fundamental stimuli. Electroencephalography and Clinical Neurophysiology: Evoked Potentials Section, 92(4), 321–330.

    Article  CAS  Google Scholar 

  • Galbraith, G. C., Arbagey, P. W., Branski, R., Comerci, N., & Rector, P. M. (1995). Intelligible speech encoded in the human brain stem frequency-following response. NeuroReport, 6(17), 2363–2367.

    Article  CAS  PubMed  Google Scholar 

  • Gao, E., & Suga, N. (2000). Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: Role of the corticofugal system. Proceedings of the National Academy of Sciences of the USA, 97(14), 8081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardi, J., Merzenich, M., & McKean, C. (1979). Origins of the scalp-recorded frequency-following response in the cat. Audiology, 18(5), 353–380.

    Article  Google Scholar 

  • Gockel, H. E., Carlyon, R. P., Mehta, A., & Plack, C. J. (2011). The frequency following response (FFR) may reflect pitch-bearing information but is not a direct representation of pitch. Journal of the Association for Research in Otolaryngology, 12(6), 767–782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenberg, S., Marsh, J. T., Brown, W. S., & Smith, J. C. (1987). Neural temporal coding of low pitch. I. Human frequency-following responses to complex tones. Hearing Research, 25(2), 91–114.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. W. (1979). Auditory brainstem frequency following responses to waveform envelope periodicity. Science, 205(4412), 1297–1299.

    Article  PubMed  Google Scholar 

  • Jafari, Z., Malayeri, S., & Rostami, R. (2015). Subcortical encoding of speech cues in children with attention deficit hyperactivity disorder. Clinical Neurophysiology, 126(2), 325–332.

    Article  PubMed  Google Scholar 

  • King, C., Warrier, C. M., Hayes, E., & Kraus, N. (2002). Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neuroscience Letters, 319(2), 111–115.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2015). Unraveling the biology of auditory learning: A cognitive-sensorimotor-reward framework. Trends in Cognitive Sciences, 19(11), 642–654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraus, N., & White-Schwoch, T. (2016). Neurobiology of everyday communication: What have we learned from music? The Neuroscientist. Doi:10.1177/1073858416653593

    PubMed  Google Scholar 

  • Kraus, N., Slater, J., Thompson, E. C., Hornickel, J., et al. (2014a). Auditory learning through active engagement with sound: Biological impact of community music lessons in at-risk children. Frontiers in Neuroscience, 8, 351. Doi:10.3389/fnins.2014.00351

  • Kraus, N., Slater, J., Thompson, E. C., Hornickel, J., et al. (2014b). Music enrichment programs improve the neural encoding of speech in at-risk children. The Journal of Neuroscience, 34(36), 11913–11918.

    Article  CAS  PubMed  Google Scholar 

  • Kraus, N., Thompson, E. C., Krizman, J., Cook, K., White-Schwoch, T., & LaBella, C. R. (2016). Auditory biological marker of concussion in children. Nature, Scientific Reports, 6(39009).

    Google Scholar 

  • Kuwada, S., Anderson, J. S., Batra, R., Fitzpatrick, D. C., et al. (2002). Sources of the scalp-recorded amplitude-modulation following response. Journal of the American Academy of Audiology, 13(4), 188–204.

    PubMed  Google Scholar 

  • Lehmann, A., Skoe, E., Moreau, P., Peretz, I., & Kraus, N. (2015). Impairments in musical abilities reflected in the auditory brainstem: Evidence from congenital amusia. European The Journal of Neuroscience, 42(1), 1644–1650.

    Article  Google Scholar 

  • Marsh, J. T., Worden, F. G., & Smith, J. C. (1970). Auditory frequency-following response: Neural or artifact? Science, 169(3951), 1222–1223.

    Article  CAS  PubMed  Google Scholar 

  • Russo, N., Nicol, T., Musacchia, G., & Kraus, N. (2004). Brainstem responses to speech syllables. Clinical Neurophysiology, 115(9), 2021–2030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shamma, S., & Lorenzi, C. (2013). On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. The Journal of the Acoustical Society of America, 133(5), 2818–2833. Doi:10.1121/1.4795783

  • Skoe, E., & Kraus, N. (2010). Auditory brainstem response to complex sounds: A tutorial. Ear and Hearing, 31(3), 302–324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder, R., & Schreiner, C. (1984). The auditory neurophonic: Basic properties. Hearing Research, 15(3), 261–280.

    Article  CAS  PubMed  Google Scholar 

  • Tarasenko, M. A., Swerdlow, N. R., Makeig, S., Braff, D. L., & Light, G. A. (2014). The auditory brainstem response to complex sounds: A potential biomarker for guiding treatment of psychosis. Frontiers in Psychiatry, 5, 142. Doi:10.3389/fpsyt.2014.00142

    Article  PubMed  PubMed Central  Google Scholar 

  • Warrier, C. M., Abrams, D. A., Nicol, T. G., & Kraus, N. (2011). Inferior colliculus contributions to phase encoding of stop consonants in an animal model. Hearing Research, 282(1–2), 108–118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinberger, N., Kitzes, L., & Goodman, D. (1970). Some characteristics of the “auditory neurophonic”. Experientia, 26(1), 46–48.

    Article  CAS  PubMed  Google Scholar 

  • White-Schwoch, T., Woodruff Carr, K., Anderson, S., Strait, D. L., & Kraus, N. (2013). Older adults benefit from music training early in life: Biological evidence for long-term training-driven plasticity. The Journal of Neuroscience, 33(45), 17667–17674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White-Schwoch, T., Nicol, T., Warrier, C. M., Abrams, D. A., & Kraus, N. (2016). Individual differences in human auditory processing: Insights from single-trial auditory midbrain activity in an animal model. Cerebral Cortex. doi:10.1093/cercor/bhw293

  • White-Schwoch, T., Woodruff Carr, K., Thompson, E. C., Anderson, S., et al. (2015). Auditory processing in noise: A preschool biomarker for literacy. PLoS Biology, 13(7), e1002196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Worden, F., & Marsh, J. (1968). Frequency-following (microphonic-like) neural responses evoked by sound. Electroencephalography and Clinical Neurophysiology, 25(1), 42–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The editors thank each of the authors in this volume for their contributions and are deeply grateful to series editors Richard R. Fay and Arthur N. Popper for their guidance and support. Thank you also to colleagues, past and present, in the Auditory Neuroscience Laboratory and Hearing Brain Laboratory. NK and TW-S are supported by NIH (R01 DC010016 and R01 HD069414), NSF (BCS 1430400), the National Association of Music Merchants, the Dana Foundation, and the Knowles Hearing Center. SA is supported by the Hearing Health Foundation, the American Hearing Research Foundation, and NIH (R21DC015843A).

Compliance with Ethics Requirements

Nina Kraus is Chief Scientific Officer of Synaural, a company working to develop a user-friendly measure of auditory processing. Samira Anderson declared that she had no conflict of interest. Travis White-Schwoch declared that he had no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kraus, N., Anderson, S., White-Schwoch, T. (2017). The Frequency-Following Response: A Window into Human Communication. In: Kraus, N., Anderson, S., White-Schwoch, T., Fay, R., Popper, A. (eds) The Frequency-Following Response. Springer Handbook of Auditory Research, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-47944-6_1

Download citation

Publish with us

Policies and ethics