Advertisement

A Distributed Framework for Early Trending Topics Detection on Big Social Networks Data Threads

  • Athena VakaliEmail author
  • Nikolaos Kitmeridis
  • Maria Panourgia
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 529)

Abstract

Social networks have become big data production engines and their analytics can reveal insightful trending topics, such that hidden knowledge can be utilized in various applications and settings. This paper addresses the problem of popular topics’ and trends’ early prediction out of social networks data streams which demand distributed software architectures. Under an online time series classification model, which is implemented in a flexible and adaptive distributed framework, trending topics are detected. Emphasis is placed on the early detection process and on the performance of the proposed framework. The implemented framework builds on the lambda architecture design and the experimentation carried out highlights the usefulness of the proposed approach in early trends detection with high rates in performance and with a validation aligned with a popular microblogging service.

Keywords

Trend Detection Time Series Generation Time Series Classification Microblogging Service Real Time Fashion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arkaitz, Z.: Real-time classification of Twitter trends. J. Assoc. Inf. Sci. Technol. 66, 462–473 (2015)CrossRefGoogle Scholar
  2. 2.
    Salvatore, G., Lo Re, G., Morana, M.: A framework for real-time Twitter data analysis. Comput. Commun. 73, 236–242 (2016)CrossRefGoogle Scholar
  3. 3.
    Li, J.: Bursty event detection from microblog: a distributed and incremental approach. Concurrency Comput. Pract. Exp. 28, 3115–3130 (2015)CrossRefGoogle Scholar
  4. 4.
    Manirupa, D.: Towards methods for systematic research on big data. In: IEEE International Conference on Big Data (Big Data). IEEE (2015)Google Scholar
  5. 5.
    Giatsoglou, M., Chatzakou, D., Shah, N., Faloutsos, C., Vakali, A.: Retweeting activity on Twitter: signs of deception. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9077, pp. 122–134. Springer, Heidelberg (2015)Google Scholar
  6. 6.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the Nineteenth International WWW Conference. ACM (2010)Google Scholar
  7. 7.
    Stanislav, N., Chen, G., Shah, D.: A latent source model for nonparametric time series classification. In: Advances in Neural Information Processing Systems (2013)Google Scholar
  8. 8.
    Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous trend-based classification of streaming time series. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS 2005. LNCS, vol. 3631, pp. 294–308. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Szomszor, M., Kostkova, P., de Quincey, E.: #Swineflu: Twitter predicts swine flu outbreak in 2009. In: Szomszor, M., Kostkova, P. (eds.) e-Health. LNICST, vol. 69, pp. 18–26. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Lei, S.: Predicting US primary elections with Twitter. http://snap.stanford.edu/social2012/papers/shi.pdf. Accessed 2012
  11. 11.
    Wang, Y.: To Follow or Not to Follow: Analyzing the Growth Patterns of the Trumpists on Twitter. arXiv:1603.08174 (2016)
  12. 12.
    Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter stream. In: SIGMOD ACM (2010)Google Scholar
  13. 13.
    Gorton, I., Klein, K.: Distribution, data, deployment: Software architecture convergence in big data systems. IEEE Softw. 32(3), 78–85 (2015)CrossRefGoogle Scholar
  14. 14.
    Tang, B.: A hierarchical distributed fog computing architecture for big data analysis in smart cities. In: Proceedings of the ASE BigData & SocialInformatics. ACM (2015)Google Scholar
  15. 15.
    Mariam, K.: Lambda architecture for cost-effective batch and speed big data processing. In: IEEE Big Data International Conference (2015)Google Scholar
  16. 16.
    Martínez-Prieto, M.: The solid architecture for real-time management of big semantic data. Future Gener. Comput. Syst. 47, 62–79 (2015)CrossRefGoogle Scholar
  17. 17.
    Marz, N.: Big data : principles and best practices of scalable realtime data systems. O’Reilly Media (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Athena Vakali
    • 1
    Email author
  • Nikolaos Kitmeridis
    • 1
  • Maria Panourgia
    • 1
  1. 1.Informatics DepartmentAristotle UniversityThessalonikiGreece

Personalised recommendations