A Language-Centric Study of Twitter Connectivity

  • Priya SahaEmail author
  • Ronaldo Menezes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10047)


One factor influencing human online connectivity, which only recently has been receiving attention, is the language used by the user in his activities. This paper uses Twitter (a popular online social network) to shed light on the effect of language to the online connectivity of people. Using techniques from Network Science, our work shows that Twitter users have a stronger preference to connect to people who use a common language, but more importantly, that this preference is stronger than the trend of connecting to people with similar popularity. Furthermore, we also show that the connecting patterns between users of different languages vary considerably; we use the concept of entropy to measure the degree of variation in the connecting patterns for each language.


Assortativity Social networks Languages Entropy 


  1. 1.
    Alstott, J., Bullmore, E., Plenz, D.: powerlaw: a python package for analysis of heavy-tailed distributions. PloS One 9(1), e85777 (2014)CrossRefGoogle Scholar
  2. 2.
    Anand, K., Bianconi, G.: Entropy measures for networks: toward an information theory of complex topologies. Phys. Rev. E 80(4), 045102 (2009)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.-L.: Network science. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 371(1987), 20120375 (2013)CrossRefGoogle Scholar
  4. 4.
    Bild, D.R., Liu, Y., Dick, R.P., Mao, Z.M., Wallach, D.S.: Aggregate characterization of user behavior in twitter and analysis of the retweet graph. ACM Trans. Internet Technol. (TOIT) 15(1), 4 (2015)CrossRefGoogle Scholar
  5. 5.
    Bollen, J., Gonçalves, B., Ruan, G., Mao, H.: Happiness is assortative in online social networks. Artif. Life 17(3), 237–251 (2011)CrossRefGoogle Scholar
  6. 6.
    Börner, K., Sanyal, S., Vespignani, A.: Network science. Ann. Rev. Inf. Sci. Technol. 41(1), 537–607 (2007)CrossRefGoogle Scholar
  7. 7.
    Centola, D., Gonzalez-Avella, J.C., Eguiluz, V.M., San, M.: Miguel: homophily, cultural drift, and the co-evolution of cultural groups. J. Conflict Resolut. 51(6), 905–929 (2007)CrossRefGoogle Scholar
  8. 8.
    Hanneman, R.A., Riddle, M.: Introduction to social network methods (2005)Google Scholar
  9. 9.
    Hechter, M.: Group formation and the cultural division of labor. Am. J. Soc. 84, 293–318 (1978)CrossRefGoogle Scholar
  10. 10.
    Hong, L., Convertino, G., Chi, E.H.: Language matters in twitter: a large scale study. In: ICWSM (2011)Google Scholar
  11. 11.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65. ACM (2007)Google Scholar
  12. 12.
    Johnson, S., Torres, J.J., Marro, J., Munoz, M.A.: Entropic origin of disassortativity in complex networks. Phys. Rev. Lett. 104(10), 108702 (2010)CrossRefGoogle Scholar
  13. 13.
    Kang, J.H., Lerman, K.: Using lists to measure homophily on twitter. In: AAAI Workshop on Intelligent Techniques for Web Personalization and Recommendation, Citeseer (2012)Google Scholar
  14. 14.
    Kim, S., Weber, I., Wei, L., Oh, A.: Sociolinguistic analysis of twitter in multilingual societies. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media, pp. 243–248. ACM (2014)Google Scholar
  15. 15.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600. ACM (2010)Google Scholar
  16. 16.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27, 415–444 (2001)CrossRefGoogle Scholar
  17. 17.
    Mocanu, D., Baronchelli, A., Perra, N., Gonçalves, B., Zhang, Q., Vespignani, A.: The twitter of babel: mapping world languages through microblogging platforms. PloS One 8(4), e61981 (2013)CrossRefGoogle Scholar
  18. 18.
    Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social network?: the structure of the twitter follow graph. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 493–498. ACM (2014)Google Scholar
  19. 19.
    Newman, M.E.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)CrossRefGoogle Scholar
  20. 20.
    Newman, M.E.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nguyen, D.-P., Gravel, R., Trieschnigg, R., Meder, T.: “how old do you think i am?” a study of language and age in twitter (2013)Google Scholar
  23. 23.
    Poblete, B., Garcia, R., Mendoza, M., Jaimes, A.: Do all birds tweet the same?: characterizing twitter around the world. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1025–1030. ACM (2011)Google Scholar
  24. 24.
    Radicchi, F., Fortunato, S., Castellano, C.: Universality of citation distributions: toward an objective measure of scientific impact. Proc. Natl. Acad. Sci. 105(45), 17268–17272 (2008)CrossRefGoogle Scholar
  25. 25.
    Robinson, A.: The Story of Writing: Alphabets, Hieroglyphs & Pictograms. Thames & Hudson (2007)Google Scholar
  26. 26.
    Roth, M., Ben-David, A., Deutscher, D., Flysher, G., Horn, I., Leichtberg, A., Leiser, N., Matias, Y., Merom, R.: Suggesting friends using the implicit social graph. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 233–242. ACM (2010)Google Scholar
  27. 27.
    Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Van Mieghem, P., Blenn, N., Doerr, C.: Lognormal distribution in the digg online social network. Eur. Phys. J. B 83(2), 251–261 (2011)CrossRefGoogle Scholar
  29. 29.
    Weerkamp, W., Carter, S., Tsagkias, M.: How people use twitter in different languages (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer SciencesFlorida Institute of TechnologyMelbourneUSA

Personalised recommendations