User Generated vs. Supported Contents: Which One Can Better Predict Basic Human Values?

  • Md. Saddam Hossain MuktaEmail author
  • Mohammed Eunus Ali
  • Jalal Mahmud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10047)


Every individual possess a set of Basic Human Values such as self-direction, power, and hedonism. These values drive an individual to commit actions in various situations in her daily lives. Values represent one’s attitudes, opinions, thoughts and goals in life, and can regulate a variety of human behaviors and manners that an individual shows in the society. In this paper, we identify five higher-level values from social media interactions by analyzing two types of contents: user generated and user supported. More importantly, we identify which type of content can better predict which human values in different scenarios, which ultimately helps us to predict human values for both silent and active users. We also build a combined value prediction model by integrating different types of interaction features, which can more accurately capture the human values than that of a single feature based model. We also build separate models for silent and active users of SNS to effectively predict values for different types of SNS users. Finally, we compare the strength of different types of models to predict values from social media usage effectively.


Linear Regression Model Social Networking Site User Generate Interaction Feature Good Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is funded by ICT Division, Ministry of Posts, Telecommunications and Information Technology, Government of the People’s Republic of Bangladesh.


  1. 1.
    Back, M.D., Stopfer, J.M., Vazire, S., Gaddis, S., Schmukle, S.C., Egloff, B., Gosling, S.D.: Facebook profiles reflect actual personality, not self-idealization. Psychol. Sci. 21, 372 (2010)Google Scholar
  2. 2.
    Bollen, J., Mao, H., Pepe, A.: Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In: ICWSM 11, pp. 450–453 (2011)Google Scholar
  3. 3.
    Boyd, R.L., Wilson, S.R., Pennebaker, J.W., Kosinski, M., Stillwell, D.J., Mihalcea, R.: Values in words: using language to evaluate and understand personal values. In: ICWSM (2015)Google Scholar
  4. 4.
    Celli, F., Pianesi, F., Stillwell, D., Kosinski, M.: Workshop on computational personality recognition (shared task). In: Proceedings of the Workshop on Computational Personality Recognition (2013)Google Scholar
  5. 5.
    Chen, J., Hsieh, G., Mahmud, J.U., Nichols, J.: Understanding individuals’ personal values from social media word use. In: CSCW, pp. 405–414. ACM (2014)Google Scholar
  6. 6.
    Cohen, R., Ruths, D.: Classifying political orientation on twitter: it’s not easy!. In: ICWSM (2013)Google Scholar
  7. 7.
    Cronbach, L.J.: Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334 (1951)Google Scholar
  8. 8.
    Derksen, S., Keselman, H.: Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British J. Math. Stat. Psychol. 45(2), 265–282 (1992)Google Scholar
  9. 9.
    Fast, E., Chen, B., Bernstein, M.: Empath: Understanding topic signals in large-scale text. arXiv preprint arXiv:1602.06979 (2016)
  10. 10.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett., 861–874 (2006)Google Scholar
  11. 11.
    Golbeck, J., Hansen, D.: Computing political preference among twitter followers. In: Proceeding of CHI, pp. 1105–1108. ACM (2011)Google Scholar
  12. 12.
    Golbeck, J., Robles, C., Edmondson, M., Turner, K.: Predicting personality from twitter. In: SocialCom, pp. 149–156. IEEE (2011)Google Scholar
  13. 13.
    Gong, W., Lim, E.P., Zhu, F.: Characterizing silent users in social media communities. In: ICWSM (2015)Google Scholar
  14. 14.
    Hastie, T., Qian, J.: Glmnet vignette. Technical report, Stanford (2014)Google Scholar
  15. 15.
    Hsieh, G., Chen, J., Mahmud, J.U., Nichols, J.: You read what you value: understanding personal values and reading interests. In: CHI, pp. 983–986. ACM (2014)Google Scholar
  16. 16.
    Hughes, D.J., Rowe, M., Batey, M., Lee, A.: A tale of two sites: Twitter vs. facebook and the personality predictors of social media usage. Comput. Hum. Behav. 28(2), 561–569 (2012)Google Scholar
  17. 17.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. In: Proceeding of the National Academy of Sciences, pp. 5802–5805 (2013)Google Scholar
  18. 18.
    Kuhn, M.: Caret package. J. Stat. Softw. 28(5), 1–26 (2008)Google Scholar
  19. 19.
    Lumley, T., Miller, A.: Leaps: regression subset selection. r package version 2.9 (2009)Google Scholar
  20. 20.
    Marshall, M.N.: Sampling for qualitative research. Family Practice 13(6), 522–526 (1996)CrossRefGoogle Scholar
  21. 21.
    Maruf, H.A., Mahmud, J., Ali, M.E.: Can hashtags bear the testimony of personality? Predicting personality from hashtag use (2014)Google Scholar
  22. 22.
    Maruf, H.A., Meshkat, N., Ali, M.E., Mahmud, J.: Human behaviour in different social medias: a case study of twitter and disqus. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 270–273. ACM (2015)Google Scholar
  23. 23.
    Oentaryo, R.J., Lim, E.P., Lo, D., Zhu, F., Prasetyo, P.K.: Collective churn prediction in social network. In: Proceeding of ASONAM 2012, pp. 210–214. IEEE Computer Society (2012)Google Scholar
  24. 24.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. LREC 10, 1320–1326 (2010)Google Scholar
  25. 25.
    Pennebaker, J.W., Booth, R.J., Francis, M.E.: Linguistic inquiry and word count: Liwc [computer software]., Austin (2007)
  26. 26.
    Preece, J., Nonnecke, B., Andrews, D.: The top five reasons for lurking: improving community experiences for everyone. Comput. Hum. Behav. 20(2), 201–223 (2004)CrossRefGoogle Scholar
  27. 27.
    Rahman, M.M., Majumder, M.T.H., Mukta, M.S.H., Ali, M.E., Mahmud, J.: Can we predict eat-out preference of a person from tweets? In: Proceedings of the 8th ACM Conference on Web Science, pp. 350–351. ACM (2016)Google Scholar
  28. 28.
    Schwartz, S.H.: A proposal for measuring value orientations across nations. In: Questionnaire Package of ESS, pp. 259–290 (2003)Google Scholar
  29. 29.
    Schwartz, S.H.: Basic human values: their content and structure across countries. In: Tamayo, A., Porto, J. (eds.) Valores e Trabalho [Values and Work], pp. 21–55. Editora Vozes, Brasilia (2005)Google Scholar
  30. 30.
    Schwartz, S.H., Melech, G., Lehmann, A., Burgess, S., Harris, M., Owens, V.: Extending the cross-cultural validity of the theory of basic human values with a different method of measurement. J. Cross Cult. Psychol. 32(5), 519–542 (2001)Google Scholar
  31. 31.
    Sill, J., Takács, G., Mackey, L., Lin, D.: Feature-weighted linear stacking. arXiv preprint arXiv:0911.0460 (2009)
  32. 32.
  33. 33.
    Sumner, C., Byers, A., Boochever, R., Park, G.J.: Predicting dark triad personality traits from twitter usage and a linguistic analysis of tweets. In: ICMLA. IEEE (2012)Google Scholar
  34. 34.
    Wiltfong, J.: Global Sharers on Social Media Sites (2013).
  35. 35.
    Wong, F.M.F., Tan, C.W., Sen, S., Chiang, M.: Quantifying political leaning from tweets and retweets. In: ICWSM (2013)Google Scholar
  36. 36.
    Yang, C., Lin, K.H.Y., Chen, H.H.: Building emotion lexicon from weblog corpora. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 133–136. Association for Computational Linguistics (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Md. Saddam Hossain Mukta
    • 1
    Email author
  • Mohammed Eunus Ali
    • 1
  • Jalal Mahmud
    • 2
  1. 1.Department of Computer Science and EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.IBM Almaden Research CenterSan JoseUSA

Personalised recommendations