Advertisement

Predicting Online Extremism, Content Adopters, and Interaction Reciprocity

  • Emilio FerraraEmail author
  • Wen-Qiang Wang
  • Onur Varol
  • Alessandro Flammini
  • Aram Galstyan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10047)

Abstract

We present a machine learning framework that leverages a mixture of metadata, network, and temporal features to detect extremist users, and predict content adopters and interaction reciprocity in social media. We exploit a unique dataset containing millions of tweets generated by more than 25 thousand users who have been manually identified, reported, and suspended by Twitter due to their involvement with extremist campaigns. We also leverage millions of tweets generated by a random sample of 25 thousand regular users who were exposed to, or consumed, extremist content. We carry out three forecasting tasks, (i) to detect extremist users, (ii) to estimate whether regular users will adopt extremist content, and finally (iii) to predict whether users will reciprocate contacts initiated by extremists. All forecasting tasks are set up in two scenarios: a post hoc (time independent) prediction task on aggregated data, and a simulated real-time prediction task. The performance of our framework is extremely promising, yielding in the different forecasting scenarios up to 93 % AUC for extremist user detection, up to 80 % AUC for content adoption prediction, and finally up to 72 % AUC for interaction reciprocity forecasting. We conclude by providing a thorough feature analysis that helps determine which are the emerging signals that provide predictive power in different scenarios.

Keywords

Social media Online extremism Radicalization prediction 

References

  1. 1.
    Agarwal, S., Sureka, A.: A focused crawler for mining hate and extremism promoting videos on youtube. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media, pp. 294–296 (2014)Google Scholar
  2. 2.
    Agarwal, S., Sureka, A.: Applying social media intelligence for predicting and identifying on-line radicalization and civil unrest oriented threats. arXiv preprint (2015). arXiv:1511.06858
  3. 3.
    Agarwal, S., Sureka, A.: Using KNN and SVM based one-class classifier for detecting online radicalization on twitter. In: Natarajan, R., Barua, G., Patra, M.R. (eds.) ICDCIT 2015. LNCS, vol. 8956, pp. 431–442. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-14977-6_47 Google Scholar
  4. 4.
    Agarwal, S., Sureka, A.: Spider and the flies: Focused crawling on tumblr to detect hate promoting communities. arXiv preprint (2016). arXiv:1603.09164
  5. 5.
    Berger, J., Morgan, J.: The ISIS twitter census: Defining and describing the population of isis supporters on twitter. The Brookings Project on US Relations with the Islamic World 3(20) (2015)Google Scholar
  6. 6.
    Berger, J., Perez, H.: The Islamic States diminishing returns on Twitter. GW Program on extremism 2–16 (2016)Google Scholar
  7. 7.
    Berger, J., Strathearn, B.: Who matters online: measuring influence, evaluating content and countering violent extremism in online social networks. Int. Centre Study Radicalisation (2013)Google Scholar
  8. 8.
    Bermingham, A., Conway, M., McInerney, L., O’Hare, N., Smeaton, A.F.: Combining social network analysis and sentiment analysis to explore the potential for online radicalisation. In: 2009 International Conference on Advances in Social Network Analysis and Mining (ASONAM), pp. 231–236. IEEE (2009)Google Scholar
  9. 9.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, H., Chung, W., Qin, J., Reid, E., Sageman, M., Weimann, G.: Uncovering the dark web: A case study of jihad on the web. J. Am. Soc. Inf. Sci. Technol. 59(8), 1347–1359 (2008)CrossRefGoogle Scholar
  11. 11.
    Cockburn, P.: The rise of Islamic State: ISIS and the new Sunni revolution. Verso Books, London (2015)Google Scholar
  12. 12.
    Conover, M.D., Davis, C., Ferrara, E., McKelvey, K., Menczer, F., Flammini, A.: The geospatial characteristics of a social movement communication network. PloS One 8(3), e55957 (2013)CrossRefGoogle Scholar
  13. 13.
    Conover, M.D., Ferrara, E., Menczer, F., Flammini, A.: The digital evolution of occupy wall street. PloS One 8(5), e64679 (2013)CrossRefGoogle Scholar
  14. 14.
    Correa, D., Sureka, A.: Solutions to detect and analyze online radicalization: a survey. arXiv preprint (2013). arXiv:1301.4916
  15. 15.
    Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: Botornot: A system to evaluate social bots. In: Proceedings of the 25th International Conference Companion on World Wide Web, pp. 273–274. International World Wide Web Conferences Steering Committee (2016)Google Scholar
  16. 16.
    Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social bots. Commun. ACM 59(7), 96–104 (2016)CrossRefGoogle Scholar
  17. 17.
    Ferrara, E., Varol, O., Menczer, F., Flammini, A.: Detection of promoted social media campaigns. In: Proceedings of the 10th International Conference on Web and Social Media (2016)Google Scholar
  18. 18.
    Fisher, A.: How jihadist networks maintain a persistent online presence. Perspect. Terrorism 9(3), 3–20 (2015)Google Scholar
  19. 19.
    Ghosh, R., Surachawala, T., Lerman, K.: Entropy-based classification of retweeting activity on twitter. In: Proceedings of KDD workshop on Social Network Analysis (SNA-KDD), August 2011Google Scholar
  20. 20.
    Gilbert, E., Karahalios, K.: Predicting tie strength with social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 211–220. ACM (2009)Google Scholar
  21. 21.
    González-Bailón, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1, 197 (2011)Google Scholar
  22. 22.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)zbMATHGoogle Scholar
  23. 23.
    Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)Google Scholar
  24. 24.
    Johnson, N.F., Zheng, M., Vorobyeva, Y., Gabriel, A., Qi, H., Velasquez, N., Manrique, P., Johnson, D., Restrepo, E., Song, C., Wuchty, S.: New online ecology of adversarial aggregates: Isis and beyond. Science 352(6292), 1459–1463 (2016)CrossRefGoogle Scholar
  25. 25.
    Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of news on digg and twitter social networks. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media, pp. 90–97 (2010)Google Scholar
  26. 26.
    Magdy, W., Darwish, K., Weber, I.: #failedrevolutions: Using Twitter to study the antecedents of ISIS support. First Monday 21(2), 1481–1492 (2016)CrossRefGoogle Scholar
  27. 27.
    Mislove, A., Lehmann, S., Ahn, Y.Y., Onnela, J.P., Rosenquist, J.N.: Understanding the demographics of twitter users. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media (2011)Google Scholar
  28. 28.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Qi, X., Christensen, K., Duval, R., Fuller, E., Spahiu, A., Wu, Q., Zhang, C.Q.: A hierarchical algorithm for clustering extremist web pages. In: 2010 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 458–463 (2010)Google Scholar
  30. 30.
    Ratkiewicz, J., Conover, M., Meiss, M., Goncalves, B., Flammini, A., Menczer, F.: Detecting and tracking political abuse in social media. In: Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, pp. 297–304 (2011)Google Scholar
  31. 31.
    Reardon, S.: Terrorism: science seeks roots of terror. Nature 517(7535), 420–421 (2015)CrossRefGoogle Scholar
  32. 32.
    Rowe, M., Saif, H.: Mining pro-ISIS radicalisation signals from social media users. In: Proceedings of the 10th International Conference on Web and Social Media (2016)Google Scholar
  33. 33.
    Scanlon, J.R., Gerber, M.S.: Automatic detection of cyber-recruitment by violent extremists. Secur. Inf. 3(1), 1–10 (2014)CrossRefGoogle Scholar
  34. 34.
    Schiermeier, Q.: Terrorism: Terror prediction hits limits. Nature 517(7535), 419 (2015)CrossRefGoogle Scholar
  35. 35.
    Stern, J., Berger, J.M.: ISIS: The state of terror. Harper, New York (2015)Google Scholar
  36. 36.
    Subrahmanian, V., Azaria, A., Durst, S., Kagan, V., Galstyan, A., Lerman, K., Zhu, L., Ferrara, E., Flammini, A., Menczer, F.: The DARPA Twitter bot challenge. Computer 49(6), 38–46 (2016)CrossRefGoogle Scholar
  37. 37.
    Sureka, A., Agarwal, S.: Learning to classify hate and extremism promoting tweets. In: 2014 IEEE Joint Intelligence and Security Informatics Conference (JISIC), pp. 320–320. IEEE (2014)Google Scholar
  38. 38.
    Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010)CrossRefGoogle Scholar
  39. 39.
    Varol, O., Ferrara, E., Ogan, C.L., Menczer, F., Flammini, A.: Evolution of online user behavior during a social upheaval. In: Proceedings of the 2014 ACM Conference on Web Science, pp. 81–90. ACM (2014)Google Scholar
  40. 40.
    Vergani, M., Bliuc, A.M.: The evolution of the ISIS’ language: a quantitative analysis of the language of the first year of dabiq magazine. Secur. Terrorism Soc. 1(2), 217–224 (2015)Google Scholar
  41. 41.
    Weiss, M., Hassan, H.: ISIS: Inside the army of terror. Simon and Schuster, New York (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Emilio Ferrara
    • 1
    Email author
  • Wen-Qiang Wang
    • 1
  • Onur Varol
    • 2
  • Alessandro Flammini
    • 2
  • Aram Galstyan
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA
  2. 2.Indiana UniversityBloomingtonUSA

Personalised recommendations