Advertisement

Analyzing Large-Scale Public Campaigns on Twitter

  • Julia ProskurniaEmail author
  • Ruslan Mavlyutov
  • Roman Prokofyev
  • Karl Aberer
  • Philippe Cudré-Mauroux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10047)

Abstract

Social media has become an important instrument for running various types of public campaigns and mobilizing people. Yet, the dynamics of public campaigns on social networking platforms still remain largely unexplored. In this paper, we present an in-depth analysis of over one hundred large-scale campaigns on social media platforms covering more than 6 years. In particular, we focus on campaigns related to climate change on Twitter, which promote online activism to encourage, educate, and motivate people to react to the various issues raised by climate change. We propose a generic framework to identify both the type of a given campaign as well as the various actions undertaken throughout its lifespan: official meetings, physical actions, calls for action, publications on climate related research, etc. We study whether the type of a campaign is correlated to the actions undertaken and how these actions influence the flow of the campaign. Leveraging more than one hundred different campaigns, we build a model capable of accurately predicting the presence of individual actions in tweets. Finally, we explore the influence of active users on the overall campaign flow.

Keywords

Gini Coefficient Dynamic Time Warping Awareness Campaign Campaign Type Message Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Alexandra Olteanu for suggestions and feedback. The work was supported by the Sinergia Grant (SNF 147609).

References

  1. 1.
    Abbar, S., Mejova, Y., Weber, I.: You tweet what you eat: studying food consumption through twitter. arXiv preprint arXiv:1412.4361 (2014)
  2. 2.
    Aiello, L.M., Petkos, G., Martin, C., Corney, D., Papadopoulos, S., Skraba, R., Goker, A., Kompatsiaris, I., Jaimes, A.: Sensing trending topics in twitter. Trans. Multi. 15(6), 1268–1282 (2013). http://dx.doi.org/10.1109/TMM.2013.2265080 CrossRefGoogle Scholar
  3. 3.
    Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., Pielke, R.A., Pierrehumbert, R.T., Rhines, P.B., Stocker, T.F., Talley, L.D., Wallace, J.M.: Abrupt climate change. Science (New York, N.Y.) 299(5615), 2005–2010 (2003). http://www.sciencemag.org/content/299/5615/2005.short CrossRefGoogle Scholar
  4. 4.
    Atkin, C., Rice, R.: Theory and principles of public communication campaigns. Public Communication Campaigns (2012)Google Scholar
  5. 5.
    Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: Real-world event identification on twitter. In: ICWSM 2011, pp. 438–441 (2011)Google Scholar
  6. 6.
    Fernandez, M., Piccolo, L.S.G., Maynard, D., Wippoo, M., Meili, C., Alani, H.: Talking climate change via social media: Communication, engagement and behaviour. In: Proceedings of the 8th ACM Conference on Web Science, WebSci 2016, pp. 85–94. ACM, New York (2016). http://doi.acm.org/10.1145/2908131.2908167
  7. 7.
    Giorgino, T.: Computing and visualizing dynamic time warping alignments in R: The DTW package. J. Stat. Softw. 31(7), 1–24 (2009)CrossRefGoogle Scholar
  8. 8.
    Gonzalez-Bailon, S., Wang, N.: Networked discontent: the anatomy of protest campaigns in social media (2013). SSRN 2268165Google Scholar
  9. 9.
    Hermida, A., Fletcher, F., Korell, D., Logan, D.: Share, like, recommend: decoding the social media news consumer. Journalism Stud. 13(5–6), 815–824 (2012)CrossRefGoogle Scholar
  10. 10.
    Hong, L., Convertino, G., Chi, E.H.: Language matters in twitter: a large scale study. In: ICWSM 2011 (2011)Google Scholar
  11. 11.
    Hoornweg, D.: Cities and Climate Change: Responding to an Urgent Agenda. World Bank Publications, Washington DC (2011)CrossRefGoogle Scholar
  12. 12.
    Jackoway, A., Samet, H., Sankaranarayanan, J.: Identification of live news events using twitter. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, pp. 25–32. ACM (2011)Google Scholar
  13. 13.
    Jin, F., Khandpur, R.P., Self, N., Dougherty, E., Guo, S., Chen, F., Prakash, B.A., Ramakrishnan, N.: Modeling mass protest adoption in social network communities using geometric brownian motion. In: KDD 2014, pp. 1660–1669. ACM, New York (2014). http://doi.acm.org/10.1145/2623330.2623376
  14. 14.
    Kirilenko, A.P., Stepchenkova, S.O.: Public microblogging on climate change: one year of Twitter worldwide. Global Environ. Change 26, 171–182 (2014). http://www.sciencedirect.com/science/article/pii/S0959378014000375 CrossRefGoogle Scholar
  15. 15.
    Koneswaran, G., Nierenberg, D.: Global farm animal production and global warming: impacting and mitigating climate change. Environmental Health Perspectives (2008)Google Scholar
  16. 16.
    Lee, K., Palsetia, D., Narayanan, R., Patwary, M.M.A., Agrawal, A., Choudhary, A.: Twitter trending topic classification. In: ICDMW 2011, pp. 251–258. IEEE Computer Society, Washington, DC (2011). http://dx.doi.org/10.1109/ICDMW.2011.171
  17. 17.
    Lehmann, J., Gonçalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes of collective attention in twitter. In: WWW 2012, pp. 251–260. ACM, New York (2012). http://doi.acm.org/10.1145/2187836.2187871
  18. 18.
    Mikolov, T., Corrado, G., Chen, K., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the International Conference on Learning Representations (ICLR 2013), pp. 1–12 (2013)Google Scholar
  19. 19.
    Norris, P.: The handbook of comparative communication research. The ICA Handbook Series (2012)Google Scholar
  20. 20.
    Olteanu, A., Castillo, C., Diakopoulos, N., Aberer, K.: Comparing events coverage in online news and social media: the case of climate change. In: ICWSM 2015 (2015)Google Scholar
  21. 21.
    Quercia, D., Askham, H., Crowcroft, J.: TweetLDA. In: WebSci 2012, pp. 247–250. ACM, New York, June 2012. http://dl.acm.org/citation.cfm?id=2380718.2380750
  22. 22.
    Schmidt, A., Ivanova, A., Schäfer, M.S.: Media attention for climate change around the world: a comparative analysis of newspaper coverage in 27 countries. Global Environ. Change 23(5), 1233–1248 (2013)CrossRefGoogle Scholar
  23. 23.
    Segerberg, A., Bennett, W.L.: Social media and the organization of collective action: using twitter to explore the ecologies of two climate change protests. Commun. Rev. 14(3), 197–215 (2011)CrossRefGoogle Scholar
  24. 24.
    Shields, S., Orme-Evans, G.: The impacts of climate change mitigation strategies on animal welfare. Animals 5(2), 361–394 (2015)CrossRefGoogle Scholar
  25. 25.
    Slovic, P.: Informing and educating the public about risk. In: Slovic, P. (ed.) The Perception of Risk, pp. 182–198. Earthscan, London (2000). cited by 0000Google Scholar
  26. 26.
    Williams, H.T., McMurray, J.R., Kurz, T., Lambert, F.H.: Network analysis reveals open forums and echo chambers in social media discussions of climate change. Global Environ. Change 32, 126–138 (2015). http://www.sciencedirect.com/science/article/pii/S0959378015000369 CrossRefGoogle Scholar
  27. 27.
    Xu, Z., Zhang, Y., Wu, Y., Yang, Q.: Modeling user posting behavior on social media. In: SIGIR 2012, pp. 545–554. ACM, New York (2012). http://doi.acm.org/10.1145/2348283.2348358

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Julia Proskurnia
    • 1
    Email author
  • Ruslan Mavlyutov
    • 2
  • Roman Prokofyev
    • 2
  • Karl Aberer
    • 1
  • Philippe Cudré-Mauroux
    • 2
  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.EXascale InfolabUniversity of FribourgFribourgSwitzerland

Personalised recommendations