Advertisement

Network-Oriented Modeling and Its Conceptual Foundations

  • Jan TreurEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10047)

Abstract

To address complexity of modeling the world’s processes, over the years in different scientific disciplines separation assumptions have been made to isolate parts of processes, and in some disciplines they have turned out quite useful. It can be questioned whether such assumptions are adequate to address complexity of integrated human mental and social processes and their interactions. In this paper it is discussed that a Network-Oriented Modeling perspective can be considered an alternative way to address complexity for modeling human and social processes.

Keywords

Network-oriented modeling Separation Interaction Conceptual foundations 

References

  1. 1.
    Aldous, J., Straus, M.A.: Social networks and conjugal roles: a test of bott’s hypothesis. Soc. Forces 44(576–580), 965–966 (1966)Google Scholar
  2. 2.
    Aral, S., Muchnik, L., Sundararajan, A.: Distinguishing influence based contagion from homophily driven diffusion in dynamic networks. Proc. Nat. Acad. Sci. (USA) 106, 1544–1549 (2009)CrossRefGoogle Scholar
  3. 3.
    Aristotle: Physica (translated by R.P. Hardie and R.K. Gaye) (350 BC)Google Scholar
  4. 4.
    Ashby, W.R.: Design for a Brain, Chapman and Hall, London (second extended edition). 5th edn., 1952 (1960)Google Scholar
  5. 5.
    Barsalou, W.: Simulation, situated conceptualization, and prediction Lawrence. Phil. Trans. R. Soc. B 364, 1281–1289 (2009)CrossRefGoogle Scholar
  6. 6.
    Becker, W., Fuchs, A.F.: Prediction in the oculomotor system: smooth pursuit during transient disappearance of a visual target. Exp. Brain Res. 57, 562–575 (1985)CrossRefGoogle Scholar
  7. 7.
    Beer, R.D.: On the dynamics of small continuous-time recurrent neural networks. Adapt. Behav. 3, 469–509 (1995)CrossRefGoogle Scholar
  8. 8.
    Beer, R.D.: Dynamical approaches to cognitive science. Trends Cogn. Sci. 4, 91–99 (2000)CrossRefGoogle Scholar
  9. 9.
    Bell, A.: Levels and loops: the future of artificial intelligence and neuroscience. Phil. Trans. R. Soc. Lond. B 354, 2013–2020 (1999)CrossRefGoogle Scholar
  10. 10.
    Bickle, J.: Psychoneural Reduction: The New Wave. MIT Press, Cambridge (1998)Google Scholar
  11. 11.
    Blankendaal, R., Parinussa, S., Treur, J.: A temporal-causal modelling approach to integrated contagion and network change in social networks. In: Proceedings of the 22nd European Conference on Artificial Intelligence, ECAI 2016. IOS Press (2016)Google Scholar
  12. 12.
    Boccalettia, S., Latorab, V., Morenod, Y., Chavez, M., Hwanga, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bode, H.W.: Network Analysis and Feedback Amplifier Design. Van Nostrand, Princeton (1945)Google Scholar
  14. 14.
    Bosse, T., Hoogendoorn, M., Klein, M.C.A., Treur, J., van der Wal, C.N., van Wissen, A.: Modelling collective decision making in groups and crowds: integrating social contagion and interacting emotions, beliefs and intentions. Auton. Agent. Multi-Agent Syst. 27, 52–84 (2013)CrossRefGoogle Scholar
  15. 15.
    Bott, E.: Family and Social Network: Roles, Norms and External Relationships in Ordinary Urban Families London. Tavistock Publications, London (1957)Google Scholar
  16. 16.
    Byrne, D.: The attraction hypothesis: do similar attitudes affect anything? J. Pers. Soc. Psychol. 51, 1167–1170 (1986)CrossRefGoogle Scholar
  17. 17.
    Cacioppo, J.T., Berntson, G.G.: Social neuroscience. Psychology Press, New York (2005)Google Scholar
  18. 18.
    Cacioppo, J.T., Visser, P.S., Pickett, C.L.: Social Neuroscience: People Thinking About Thinking People. MIT Press, Cambridge (2006)Google Scholar
  19. 19.
    Clark, A.: Being There: Putting Brain, Body, and World Together Again. MIT Press, Cambridge (1998)Google Scholar
  20. 20.
    Crick, F., Koch, C.: Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391, 245–250 (1998)CrossRefGoogle Scholar
  21. 21.
    Damasio, A.R.: Descartes’ Error: Emotion. Reason and the Human Brain. Papermac, London (1994)Google Scholar
  22. 22.
    Damasio, A.R.: The Feeling of What Happens, Body and Emotion in the Making of Consciousness. Harcourt Brace, New York (1999)Google Scholar
  23. 23.
    Damasio, A.R.: Looking for Spinoza. Vintage books, London (2003)Google Scholar
  24. 24.
    Damasio, A.R.: Self Comes to Mind: Constructing the Conscious Brain. Pantheon Books, NY (2010)Google Scholar
  25. 25.
    Decety, J., Cacioppo, J.T. (eds.): Handbook of Social Neuroscience. Oxford University Press, New York (2010)Google Scholar
  26. 26.
    Decety, J., Ickes, W.: The Social Neuroscience of Empathy. MIT Press, Cambridge (2009)CrossRefGoogle Scholar
  27. 27.
    Deliens, G., Gilson, M., Peigneux, P.: Sleep and the processing of emotions. Exp. Brain Res. 232, 1403–1414 (2014)CrossRefGoogle Scholar
  28. 28.
    Dolan, R.J.: Emotion, cognition, and behavior. Science 298, 1191–1194 (2002)CrossRefGoogle Scholar
  29. 29.
    Dubois, D., Lang, J., Prade, H.: Fuzzy sets in approximate reasoning, Part 2: logical approaches. Fuzzy Sets Syst. 40, 203–244 (1991). North-HollandGoogle Scholar
  30. 30.
    Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32, 35–66 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Eich, E., Kihlstrom, J.F., Bower, G.H., Forgas, J.P., Niedenthal, P.M.: Cognition and Emotion. Oxford University Press, New York (2000)Google Scholar
  32. 32.
    Elzas, M.S.: Organizational structures for facilitating process innovation. In: Real Time Control of Large Scale Systems, pp. 151–163. Springer, Heidelberg (1985)Google Scholar
  33. 33.
    Flory, P.J.: Network structure and the elastic properties of vulcanized rubber. Chem. Rev. 35, 51–75 (1944)CrossRefGoogle Scholar
  34. 34.
    Forgas, J.P., Goldenberg, L., Unkelbach, C.: Can bad weather improve your memory? An unobtrusive field study of natural mood effects on real-life memory. J. Exp. Soc. Psychol. 45, 254–257 (2009)CrossRefGoogle Scholar
  35. 35.
    Forrester, J.W.: Lessons from system dynamics modeling. Syst. Dyn. Rev. 3, 136–149 (1987)CrossRefGoogle Scholar
  36. 36.
    Forrester, J.W.: World Dynamics, 2nd edn. Pegasus Communications, Waltham (1973)Google Scholar
  37. 37.
    Freeman, L.C.: The Development of Social Network Analysis: A Study in the Sociology of Science. BookSurge Publishing, Vancouver (2004)Google Scholar
  38. 38.
    Frijda, N.H., Manstead, A.S.R., Bem, S.: The influence of emotions on beliefs. In: Frijda, N.H., et al. (eds.) Emotions and Beliefs: How Feelings Influence Thoughts, pp. 1–9. Cambridge University Press (2000)Google Scholar
  39. 39.
    Funahashi, K., Nakamura, Y.: Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw. 6, 801–806 (1993)CrossRefGoogle Scholar
  40. 40.
    Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 2, 493–501 (1998)CrossRefGoogle Scholar
  41. 41.
    Gazzaniga, M.S. (ed.): The Cognitive Neurosciences. MIT Press, Cambridge (2009)Google Scholar
  42. 42.
    Giangiacomo, G.: Fuzzy logic: Mathematical Tools for Approximate Reasoning. Kluwer Academic Publishers, Dordrecht (2001)zbMATHGoogle Scholar
  43. 43.
    Giles, J.: Computational social science: making the links. Nature 488, 448–450 (2012)CrossRefGoogle Scholar
  44. 44.
    Goldman, A.I.: Simulating Minds: The Philosophy, Psychology, and Neuroscience of Mindreading. Oxford Univ. Press, New York (2006)CrossRefGoogle Scholar
  45. 45.
    Grossberg, S.: On learning and energy-entropy dependence in recurrent and nonrecurrent signed networks. J. Stat. Phys. 1, 319–350 (1969)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Gujar, N., McDonald, S.A., Nishida, M., Walker, M.P.: A role for REM sleep in recalibrating the sensitivity of the human brain to specific emotions. Cereb. Cortex 21, 115–123 (2011)CrossRefGoogle Scholar
  47. 47.
    Harmon-Jones, E., Winkielman, P. (eds.): Social Neuroscience: Integrating Biological and Psychological Explanations of Social Behavior. Guilford, New York (2007)Google Scholar
  48. 48.
    Hebb, D.: The Organisation of Behavior. Wiley, New York (1949)Google Scholar
  49. 49.
    Hesslow, G.: Will neuroscience explain consciousness? J. Theoret. Biol. 171, 29–39 (1994)CrossRefGoogle Scholar
  50. 50.
    Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends Cogn. Sci. 6, 242–247 (2002)CrossRefGoogle Scholar
  51. 51.
    Hesslow, G.: The current status of the simulation theory of cognition. Brain Res. 1428, 71–79 (2012)CrossRefGoogle Scholar
  52. 52.
    Hirsch, M.: Convergent activation dynamics in continuous-time networks. Neural Netw. 2, 331–349 (1989)CrossRefGoogle Scholar
  53. 53.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational properties. Proc. Nat. Acad. Sci. (USA) 79, 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. (USA) 81, 3088–3092 (1984)CrossRefGoogle Scholar
  55. 55.
    Hubbard, J.C.: The Acoustic Resonator Interferometer: I. The Acoustic System and its Equivalent Electric Network. Phys. Rev. 38, 1011 (1931); Erratum. Phys. Rev. 46, 525 (1934)CrossRefGoogle Scholar
  56. 56.
    Huber, J.F.: The arterial network supplying the dorsum of the foot. Anat. Rec. 80, 373 (1941)CrossRefGoogle Scholar
  57. 57.
    Iacoboni, M.: Mirroring People: the New Science of How We Connect with Others. Farrar, Straus & Giroux, New York (2008)Google Scholar
  58. 58.
    James, W.: What is an emotion. Mind 9, 188–205 (1884)CrossRefGoogle Scholar
  59. 59.
    Jenison, R.L., Rangel, A., Oya, H., Kawasaki, H., Howard, M.A.: Value encoding in single neurons in the human amygdala during decision making. J. Neurosci. 31, 331–338 (2011)CrossRefGoogle Scholar
  60. 60.
    Kelso, J.A.S.: Dynamic Patterns: The Self-Organization of Brain and Behavior. MIT Press, Cambridge (1995)Google Scholar
  61. 61.
    Kim, J.: Philosophy of Mind. Westview Press, Colorado (1996)Google Scholar
  62. 62.
    Kim, J.: Mind in a Physical world: an Essay on the Mind-Body Problem and Mental Causation. MIT Press, Cambridge (1998)Google Scholar
  63. 63.
    Kuipers, B.J.: Commonsense reasoning about causality: deriving behavior from structure. Artif. Intell. 24, 169–203 (1984)CrossRefGoogle Scholar
  64. 64.
    Kuipers, B.J., Kassirer, J.P.: How to discover a knowledge representation for causal reasoning by studying an expert physician. In: Proceedings Eighth International Joint Conference on Artificial Intelligence, IJCAI 1983. William Kaufman, Los Altos (1983)Google Scholar
  65. 65.
    LaBar, K.S., Cabeza, R.: Cognitive neuroscience of emotional memory. Nat. Rev. Neurosci. 7, 54–64 (2006)CrossRefGoogle Scholar
  66. 66.
    Lakoff, G., Johnson, M.: Philosophy in the flesh: The embodied mind and its challenge to western thought. Basic Books (1999)Google Scholar
  67. 67.
    Levin, R., Nielsen, T.A.: Disturbed dreaming, posttraumatic stress disorder, and affect distress: a review and neurocognitive model. Psychol. Bull. 133, 482–528 (2007)CrossRefGoogle Scholar
  68. 68.
    Lewis, M.D.: Self-organizing cognitive appraisals. Cogn. Emot. 10, 1–25 (1996)CrossRefGoogle Scholar
  69. 69.
    Loewenstein, G., Lerner, J.: The role of emotion in decision making. In: Davidson, R.J., Goldsmith, H.H., Scherer, K.R. (eds.) The Handbook of Affective Science, pp. 619–642. Oxford University Press, Oxford (2003)Google Scholar
  70. 70.
    Marques, H.G., Holland, O.: Architectures for functional imagination. Neurocomputing 72, 743–759 (2009)CrossRefGoogle Scholar
  71. 71.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophysics 5, 115–133 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001)CrossRefGoogle Scholar
  73. 73.
    Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You Are Who You Know: Inferring User Profiles in Online Social Networks. Proc. WSDM 2010, 4–6 February 2010, New York City, New York, USA, pp. 251–260 (2010)Google Scholar
  74. 74.
    Mooij, J.M., Janzing, D., Schölkopf, B.: From differential equations to structural causal models: the deterministic case. In: Nicholson, A., Smyth, P. (eds.) Proceedings of the 29th Annual Conference on Uncertainty in Artificial Intelligence (UAI-13), pp. 440–448. AUAI Press (2013)Google Scholar
  75. 75.
    Moreno, J.L., Jennings: H.H.: Statistics of social configurations. Sociometry 1, 342–374 (1938)Google Scholar
  76. 76.
    Mundt, M.P., Mercken, L., Zakletskaia, L.I.: Peer selection and influence effects on adolescent alcohol use: a stochastic actor-based model. BMC Pediatr. 12, 115 (2012)CrossRefGoogle Scholar
  77. 77.
    Naudé, A., Le Maitre, D., de Jong, T., Mans, G.F.G. Hugo, W.: Modelling of spatially complex human-ecosystem, rural-urban and rich-poor interactions (2008). https://www.researchgate.net/profile/Tom_De_jong/publication/30511313_Modelling_of_spatially_complex_human-ecosystem_rural-urban_and_rich-poor_interactions/links/02e7e534d3e9a47836000000.pdf
  78. 78.
    Nussbaum, M. (ed.): Aristotle’s De Motu Animalium. Princeton University Press, Princeton (1978)Google Scholar
  79. 79.
    Ouellet, C., Benson, A.A.: The path of carbon in photosynthesis. J. Exp. Bot. 3, 237–245 (1951)CrossRefGoogle Scholar
  80. 80.
    Ousdal, O.T., Specht, K., Server, A., Andreassen, O.A., Dolan, R.J., Jensen, J.: The human amygdala encodes value and space during decision making. Neuroimage 101, 712–719 (2014)CrossRefGoogle Scholar
  81. 81.
    Pace-Schott, E.F., Germain, A., Milad, M.R.: Effects of sleep on memory for conditioned fear and fear extinction. Psychol. Bull. 141, 835–857 (2015)CrossRefGoogle Scholar
  82. 82.
    Pearl, J.: Causality. Cambridge University Press (2000)Google Scholar
  83. 83.
    Pessoa, L.: On the relationship between emotion and cognition. Nat. Rev. Neurosci. 9, 148–158 (2008)CrossRefGoogle Scholar
  84. 84.
    Pezzulo, G., Candidi, M., Dindo, H., Barca, L.: Action simulation in the human brain: Twelve questions. New Ideas Psychol. 31, 270–290 (2013)CrossRefGoogle Scholar
  85. 85.
    Phelps, E.A.: Emotion and cognition: insights from studies of the human amygdala. Annu. Rev. Psychol. 57, 27–53 (2006)CrossRefGoogle Scholar
  86. 86.
    Pineda, J.A. (ed.): Mirror Neuron Systems: The Role of Mirroring Processes in Social Cognition. Humana Press Inc. (2009)Google Scholar
  87. 87.
    Port, R.F., van Gelder, T.: Mind as Motion: Explorations in the Dynamics of Cognition. MIT Press, Cambridge (1995)Google Scholar
  88. 88.
    Potter, S.M.: What can artificial intelligence get from neuroscience? In: Lungarella, M., Bongard, J., Pfeifer, R. (eds.) Artificial Intelligence Festschrift: The Next 50 Years. Springer, Berlin (2007)Google Scholar
  89. 89.
    Purves, D., Brannon, E.M., Cabeza, R., Huettel, S.A., LaBar, K.S., Platt, M.L., Woldorff, M.G.: Principles of Cognitive Neuroscience. Sinauer Associates Inc., Sunderland (2008)Google Scholar
  90. 90.
    Rangel, A., Camerer, C., Montague, P.R.: A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008)CrossRefGoogle Scholar
  91. 91.
    Rizzolatti, G., Sinigaglia, C.: Mirrors in the Brain: How Our Minds Share Actions and Emotions. Oxford University Press (2008)Google Scholar
  92. 92.
    Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organisation in the brain. Psych. Rev. 65, 386–408 (1958)MathSciNetCrossRefGoogle Scholar
  93. 93.
    Scherer, K.R.: Emotions are emergent processes: they require a dynamic computational architecture. Phil. Trans. R. Soc. B 364, 3459–3474 (2009)CrossRefGoogle Scholar
  94. 94.
    Shalizi, C.R., Thomas, A.C.: Homophily and Contagion are Generically Confounded in Observational Social Network Studies. Sociol. Methods Res. 40, 211–239 (2011)MathSciNetCrossRefGoogle Scholar
  95. 95.
    Sharpanskykh, A., Treur, J.: Modelling and analysis of social contagion in dynamic networks. Neurocomputing 146, 140–150 (2014)CrossRefGoogle Scholar
  96. 96.
    Sotres-Bayon, F., Bush, D.E., LeDoux, J.E.: Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn. Mem. 11, 525–535 (2004)CrossRefGoogle Scholar
  97. 97.
    Steglich, C.E.G., Snijders, T.A.B., Pearson, M.: Dynamic networks and behavior: separating selection from influence. Sociol. Methodol. 40, 329–393 (2010)CrossRefGoogle Scholar
  98. 98.
    Storbeck, J., Clore, G.L.: On the interdependence of cognition and emotion. Cogn. Emot. 21, 1212–1237 (2007)CrossRefGoogle Scholar
  99. 99.
    Thelen, E., Smith, L.: A dynamic Systems Approach to the Development of Cognition and Action. MIT Press, Cambridge (1994)Google Scholar
  100. 100.
    Thilakarathne, D.J., Treur, J.: Computational cognitive modelling of action awareness: prior and retrospective. Brain Informatics 2, 77–106 (2015)CrossRefGoogle Scholar
  101. 101.
    Treloar, L.R.G.: The elasticity of a network of longchain molecules. I. Trans. Faraday Soc. 39, 241–246 (1943)CrossRefGoogle Scholar
  102. 102.
    Treur, J.: A Cognitive Agent Model Incorporating Prior and Retrospective Ownership States for Actions. In: Walsh, T. (ed.), Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 1743–1749 (2011)Google Scholar
  103. 103.
    Treur, J.: A cognitive agent model displaying and regulating different social response patterns. In: Walsh, T. (ed.) Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 1735–1742 (2011)Google Scholar
  104. 104.
    Treur, J.: Dynamic modelling based on a temporal-causal network modelling approach. Biologically Inspired Cogn. Architectures 16, 131–168 (2016)CrossRefGoogle Scholar
  105. 105.
    Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive. Affective and Social Interactions. Understanding Complex Systems Series. Springer Publishing (2016)Google Scholar
  106. 106.
    Treur, J., Umair, M.: Emotions as a vehicle for rationality: rational decision making models based on emotion-related valuing and hebbian learning. Biologically Inspired Cogn. Architectures 14, 40–56 (2015)CrossRefGoogle Scholar
  107. 107.
    Valente, T.W.: Social Networks and Health: Models, Methods, and Applications. Oxford University Press, New York (2010)CrossRefGoogle Scholar
  108. 108.
    van Gelder, T.: The dynamical hypothesis in cognitive science. Behav. Brain Sci. 21, 615–665 (1998)Google Scholar
  109. 109.
    van Gelder, T., Port, R.: It’s about time: an overview of the dynamical approach to cognition. In: Port, R.F., van Gelder, T.: Mind as Motion: Explorations in the Dynamics of Cognition, pp. 1–43. MIT Press, Cambridge (1995)Google Scholar
  110. 110.
    Westerhoff, H.V., Groen, A.K., Wanders, R.J.A.: Modern theories of metabolic control and their applications. Biosci. Rep. 4, 1–22 (1984)CrossRefGoogle Scholar
  111. 111.
    Wiener, N., Rosenblueth, A.: The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mexico. 16, 202 (1946)MathSciNetzbMATHGoogle Scholar
  112. 112.
    Wilson, M.: Six views of embodied cognition. Psychon. Bull. Rev. 9, 625–636 (2002)CrossRefGoogle Scholar
  113. 113.
    Winkielman, P., Niedenthal, P.M., Oberman, L.M.: embodied perspective on emotion-cognition interactions. In: Pineda, J.A. (ed.) Mirror Neuron Systems: the Role of Mirroring Processes in Social Cognition. Humana Press/Springer Science, pp. 235–257 (2009)Google Scholar
  114. 114.
    Wright, S.: Correlation and Causation. J. Agric. Res. 20, 557–585 (1921)Google Scholar
  115. 115.
    Zadeh, L.: Fuzzy sets as the basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978). Reprinted in Fuzzy Sets and Systems 100 (Suppl.), 9–34 (1999)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Behavioural Informatics GroupVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations