Skip to main content

Heat Shock Proteins in Multiple Sclerosis

  • Chapter
  • First Online:
Multiple Sclerosis: Bench to Bedside

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 958))

Abstract

Multiple sclerosis (MS) is an immune-mediated and neurodegenerative central nervous system disease, mostly affect myelin sheaths. The MS pathogenesis is still under debate. It is influenced by genetic, environment factors. Heat shock proteins (HSPs) are highly conserved proteins seen in all organisms. Not only heat stress but also under many stress conditions they are overexpressed. Their roles in MS pathogenesis are highly correlated with their location (intracellular or extracellular). In this chapter, we will discuss the role of HSP in MS pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

alzheimer’s disease

ALS:

amyotrophic lateral sclerosis

APAF-1:

apoptosis protease activating factor-1

APC:

antigen presenting cell

ATP:

adenosine three phosphate

CNS:

central nervous system

CSF:

cerebrospinal fluid

EAE:

experimental autoimmune encepha-lomyelitis

EDSS:

expanded disability scale score

HD:

huntington disease

HSP:

heat shock protein

IL-1β:

interleukin 1β

LDL:

low density lipoprotein

MAPK-2:

mitogen-activated protein kinase 2

MHC:

major histocompatibility complex

MS:

multiple sclerosis

NAWM:

normal-appearing white matter

NBD:

nucleotide binding domain

NK:

natural killer

OND:

other neurologic diseases

PD:

parkinson’s disease

RRMS:

relapsing-remitting multiple sclerosis

TLR:

toll like receptor

TNF-α:

tumor necrosis factor-α

WM:

white matter

References

  • Agius MA, Kirvan CA, Schafer AL, Gudipati E, Zhu S (1999) High prevalence of anti-alpha-crystallin antibodies in multiple sclerosis: correlation with severity and activity of disease. Acta Neurol Scand 100(3):139–147

    Article  CAS  PubMed  Google Scholar 

  • Aquino DA, Capello E, Weisstein J et al (1997) Multiple sclerosis: altered expression of 70- and 27-kDa heat shock proteins in lesions and myelin. J Neuropathol Exp Neurol 56(6):664–672

    Article  CAS  PubMed  Google Scholar 

  • Beere HM (2004) The stress of dying: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117:2641–2651

    Article  CAS  PubMed  Google Scholar 

  • Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  • Boelens WC (2014) Cell biological roles of αB-crystallin. Prog Biophys Mol Biol 115(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Boiocchi C, Osera C, Monti MC et al (2014) Are Hsp70 protein expression and genetic polymorphism implicated in multiple sclerosis inflammation? J Neuroimmunol 268(1–2):84–88

    Article  CAS  PubMed  Google Scholar 

  • Boog CJ, Graeff-Meeder EK, Lucassen MA et al (1992) Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. J Exp Med 175:1805–1810

    Article  CAS  PubMed  Google Scholar 

  • Brocchieri L, Karlin S (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 9:476–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownell SE, Becker RA, Steinman L (2012) The protective and therapeutic function of small heat shock proteins in neurological diseases. Front Immunol 3:74. doi:10.3389/fimmu.2012.00074

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruey JM, Ducasse C, Bonniaud P et al (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2(9):645–652

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Ohwatari N, Matsumoto T, Kosaka M, Ohtsuru A, Yamashita S (1999) TGF-β11 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts. Pflugers Arch 438(3):239–244

    Article  CAS  PubMed  Google Scholar 

  • Cassu D, Masala S, Frau J, Cocco E, Marrosu MG, Sechi LA (2013) Anti mycobacterium avium subsp. Paratuberculosis heat shock protein 70 antibodies in sera of Sardinian patients with multiple sclerosis. J Neurol Sci 355(1–2):131–133

    Article  Google Scholar 

  • Ce P, Erkizan O, Gedizlioglu M (2011) Elevated HSP27 levels during attacks in patients with multiple sclerosis. Acta Neurol Scand 124:317–320

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Yokota S, Yonekura K et al (2006) Autoantibodies against HSP70 family proteins were detected in the cerebrospinal fluid from patients with multiple sclerosis. J Neurol Sci 241(1–2):39–43

    Article  CAS  PubMed  Google Scholar 

  • Cid C, Regidor I, Alcázar A (2007) Anti-heat shock protein 90beta antibodies are detected in patients with multiple sclerosis during remission. J Neuroimmunol 184(1–2):223–226

    Article  CAS  PubMed  Google Scholar 

  • Coban P, Ce P, Erkizan O, Gedizlioglu M (2011) Heat shock protein 27 in migraine patients. J Neurological Sciences (Turkish) 28(1):28–34

    Google Scholar 

  • Creagh EM, Carmody RJ, Cotter TG (2000) Heat shock protein 70 inhibits caspase-dependent and -independent apoptosis in Jurkat T cells Exp. Cell Res 257:58–66

    Article  CAS  Google Scholar 

  • Cwiklinska H, Mycko MP, Luvsannorov O et al (2003) Heat shock protein 70 associations with myelin basic protein and proteolipid protein in multiple sclerosis brains. Int Immunol 15:241–249

    Article  CAS  PubMed  Google Scholar 

  • Cwiklinska H, Mycko MP, Szymanska B, Matysiak M, Selmaj KW (2010) Aberrant stress-induced Hsp70 expression in immune cells in multiple sclerosis. J Neurosci Res 88(14):3102–3110

    Article  CAS  PubMed  Google Scholar 

  • De Kleer I, Y. V, M. K et al (2010) CD30 discriminates heat shock protein 60-induced FOXP3+ CD4+ T cells with a regulatory phenotype. J Immunol 185:2071–2079

    Article  CAS  PubMed  Google Scholar 

  • Dello RC, Polak PE, Mercado PR et al (2006) The heat-shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin suppresses glial inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurochem 99(5):1351–1362

    Article  Google Scholar 

  • Eden WV, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330

    Article  PubMed  Google Scholar 

  • Feng H, Zeng Y, Graner MW, Katsanis E (2002) Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood 100:4108–4115

    Article  CAS  PubMed  Google Scholar 

  • Frischer J. M, S.D W, Guo Y et al (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78(5):710–721

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao YL, Raine CS, Brosnan CF (1994) Humoral response to HSP 65 in multiple sclerosis and other neurologic conditions. Neurology 44(5):941–946

    Article  CAS  PubMed  Google Scholar 

  • Garrido C (2002) Size matters: of the small HSP27 and its large oligomers. Cell Death Differ 9:483–485

    Article  CAS  PubMed  Google Scholar 

  • Gezen-Ak D, Dursun E, Hanaǧasi H et al (2013) BDNF, TNFα, HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’s disease or mild cognitive impairment. J Alzheimers Dis 37:185–195

    CAS  PubMed  Google Scholar 

  • Giuseppina T, Rosaria T, Gabriella S, Alexzander A, Giovanni S, Ragonese P, Geraci F (2014) Positive or negative involvement of heat shock proteins in multiple sclerosis pathogenesis. J Neuropathol Exp Neurol 73(12):1092–1106

    Article  Google Scholar 

  • Guo JS, Chau JF, Shen XZ, Cho CH, Luk JM, Koo MW (2004) Over-expression of inducible heat shock protein 70 in the gastric mucosa of partially sleep-deprived rats. Scand J Gastroenterol 39:510–515

    Article  CAS  PubMed  Google Scholar 

  • Hendrick JP, Hartl FU (1993) Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62:349–384

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Pedro NY, Espinosa-Ramirez G, de la Cruz VP, Pineda B, Sotelo J (2013) Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol 2013:413465. doi:10.1155/2013/413465

    Article  PubMed  PubMed Central  Google Scholar 

  • Horowitz M, Robinson SD (2007) Heat shock proteins and the heat shock responses during hyperthermia and its modulation by altered physiological conditions. Prog Brain Res 162:433–436

    Article  CAS  PubMed  Google Scholar 

  • Iwaki T, Iwaki A, Tateishi J, Sakaki Y, Goldman JE (1993) Alpha B-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol 143(2):487–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaattela M (1999) Heat shock proteins as cellular lifeguards. Ann Med 31:261–271

    Article  CAS  PubMed  Google Scholar 

  • James P, Pfund C, Craig EA (1997) Functional specificity among HSP70 molecular chaperones. Science 275:387–389

    Article  CAS  PubMed  Google Scholar 

  • Kalmar B, Lu CH, Greensmith L (2014) The role of heat shock proteins in Amyotrophic Lateral Sclerosis: the therapeutic potential of Arimoclomol. Pharmacol Ther 141(1):40–54

    Article  CAS  PubMed  Google Scholar 

  • Kamm CP, Uitdehaag BM, Polman CH (2014) Multiple sclerosis: current knowledge and future outlook. Eur Neurol 72:132–114

    Article  CAS  PubMed  Google Scholar 

  • Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14(1):105–111

    Article  CAS  PubMed  Google Scholar 

  • Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces α-synuclein aggregation and toxicity. J Biol Chem 279:25497–25502

    Article  CAS  PubMed  Google Scholar 

  • Kurtzke JF (2000) Multiple sclerosis in time and space-geographic clues to cause. J Neuro Virol 6(Suppl 2):134–140

    Google Scholar 

  • Li J, Soroka J, Buchner J (2012) The HSP90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823(3):624–635

    Article  CAS  PubMed  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogenity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  CAS  PubMed  Google Scholar 

  • Lund BT, Chakryan Y, Ashikian N et al (2006) Association of MBP peptides with Hsp70 in normal appearing human white matter. J Neurol Sci 249(2):122–134

    Article  CAS  PubMed  Google Scholar 

  • Mansilla MJ, Montalban X, Espejo C (2012) Heat shock protein 70: roles in multiple sclerosis. Mol Med. doi:10.2119/molmed.2012.00119

    PubMed  PubMed Central  Google Scholar 

  • Mansilla MJ, Costa C, Eixarch H et al (2014) Hsp70 regulates immune response in experimental autoimmune encephalomyelitis. PLoS One 9(8). doi:10.1371/journal.pone.0105737

  • Matz JM, Blake MJ, Tatelman HM, Lavoi KP, Holbrook NJ (1995) Characterization and regulation of cold-induced heat shock protein expression in mouse brown adipose tissue. Am J Phys 269(1 Pt 2):38–47

    Google Scholar 

  • Mayer MP, Kityk R (2015) Insights into the molecular mechanism of allostery in HSP70s. Front Mol Biosci 2:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1- and staurosporine-induced cell death. J Biol Chem 271:16510–16514

    Article  CAS  PubMed  Google Scholar 

  • Niino M, Kikuchi S, Fukazawa T, Yabe I, Sasaki H, Tashiro K (2001) Heat shock protein 70 gene polymorphism in Japanese patients with multiple sclerosis. Tissue Antigens 58:93–96

    Article  CAS  PubMed  Google Scholar 

  • Okuno M, Adachi S, Kozawa O, Shimizu M, Yasuda I (2016) The clinical significance of phosphorilated heat shock protein 27 (HSPB1) in pancreatic cancer. Int J Mol Sci 17(1):137

    Article  PubMed Central  Google Scholar 

  • Ou JR, Meng-Shan T, Xie AM, Yu JT, Tan L (2014) Heat shock protein 90 in Alzheimer’s disease. Biomed Res Int. doi:10.1155/2014/796869

    Google Scholar 

  • Peferoen LAN, Gerritsen WH, Breur M et al (2015) Acta Neuropathol Commun 3:87. doi:10.1186/s40478-015-0267-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Pockley AG (2001) Heat shock proteins in health and disease: therapeutic targets or therapeutic agents? Expert Rev Mol Med 3:1–21

    Article  CAS  PubMed  Google Scholar 

  • Poulain P, Gelly JC, Flatters D (2010) Detection and architecture of small heat shock protein monomers. PLoS One 5(4):e9990. doi:10.1371/journal.pone.0009990

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritossa FA (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    Article  CAS  Google Scholar 

  • Roodveldt C, Bertoncini CW, Andersson A et al (2009) Chaperone proteostasis in Parkinson’s disease: stabilization of the Hsp70/α-synuclein complex by Hip. EMBO J 28:3758–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothbard JB, Zhao X, Sharpe O (2011) Chaperone activity of α B-crystallin is responsible for its incorrect assignment as an autoantigen in multiple sclerosis. J Immunol 186(7):4263–4268. doi:10.4049/jimmunol.1003934 Epub 2011 Feb 25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T, Kimura A, Yamada M et al (2011) Identification of antibodies as biological markers in serum from multiple sclerosis patients by immunoproteomic approach. J Neuroimmunol 233(1–2):175–180

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265(21):12111–12114

    CAS  PubMed  Google Scholar 

  • Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Selmaj K, Brosnan CF, Raine CS (1991) Immunology. Proc Natl Acad Sci U S A 88:6452–6456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair C, Mirakhur M, Kirk J, Farrell M, McQuaid S (2005) Up-regulation of osteopontin and alphaBeta-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays. Neuropathol Appl Neurobiol 31(3):292–303

    Article  CAS  PubMed  Google Scholar 

  • Stys PK, Zamponi GW, van Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up (review)? Nat Rev Neurosci 13:507–514

    Article  CAS  PubMed  Google Scholar 

  • Talla V, Porciatti V, Chiodo V, Boye SL, Hauswirth WW, Guy J (2014) Gene therapy with mitochondrial heat shock protein 70 suppresses visual loss and optic atrophy in experimental autoimmune encephalomyelitis. Invest Ophthalmol Vis Sci 55(8):5214–5226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turturici G, Sconzo G, Geraci F (2011) HSP70 and its molecular role in nervous system diseases. Biochem Res Int. doi:10.1155/2011/618127

    PubMed  PubMed Central  Google Scholar 

  • Urbak L, Vorum H (2010) Heat shock proteins in the human eye. Int J Proteomics 8:15–27

    Google Scholar 

  • Van Noort J. M, van Sechel AC, van Stipdonk MJ, Bajramovic JJ (1998) The small heat shock protein alpha B-crystallin as key autoantigen in multiple sclerosis. Prog Brain Res 117:435–452

    Article  PubMed  Google Scholar 

  • Ye BX, Deng X, Shao LD et al (2015) Vibsanin B preferentially targets HSP90β, inhibits interstitial leukocyte migration, and ameliorates experimental autoimmune encephalomyelitis. J Immunol 194(9):4489–4497

    Article  CAS  PubMed  Google Scholar 

  • Yokota S, Chiba S, Furuyama H, Fujii N (2010) Cerebrospinal fluids containing anti-HSP70 autoantibodies from multiple sclerosis patients augment HSP70-induced proinflammatory cytokine production in monocytic cells. J Neuroimmunol 218(1–2):129–133

    Article  CAS  PubMed  Google Scholar 

  • Zorzella-Pezavento SF, Chiuso-Minicucci F, França TG et al (2014) Downmodulation of peripheral MOGspecific immunity by pVAXHSP65 treatment during EAE does not reach the CNS. J Neuroimmunol 268(1–2):35–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Murat Ortan and Burak Ozes for their help while preparing the illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ortan Pinar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pinar, O., Ozden, Y.A., Omur, E., Muhtesem, G. (2017). Heat Shock Proteins in Multiple Sclerosis. In: Asea, A., Geraci, F., Kaur, P. (eds) Multiple Sclerosis: Bench to Bedside. Advances in Experimental Medicine and Biology, vol 958. Springer, Cham. https://doi.org/10.1007/978-3-319-47861-6_3

Download citation

Publish with us

Policies and ethics