Interfacing Graphene for Electrochemical Biosensing



The integration of carbon-based materials to bridge the biological and electronic worlds has fundamentally changed the understanding of how to generate functional bioelectronic devices, including biosensors, biofuel cells and bioactuators, and also opened up a new window for the future of bioelectronics.


Carbon-based nanomaterials Graphene Nanotechnology Biosensing Nano-biointerfaces Biosensing Graphene modification 


  1. 1.
    Wu SX, He QY, Tan CL, Wang YD, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172CrossRefGoogle Scholar
  2. 2.
    Huang X, Zeng ZY, Fan ZX, Liu JQ, Zhang H (2012) Graphene-based electrodes. Adv Mater 24:5979–6004CrossRefGoogle Scholar
  3. 3.
    Wang Y, Li ZH, Wang J, Li JH, Lin YH (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212CrossRefGoogle Scholar
  4. 4.
    Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196CrossRefGoogle Scholar
  5. 5.
    Noy A (2011) Bionanoelectronics. Adv Mater 23:807–820CrossRefGoogle Scholar
  6. 6.
    Duan XJ, Lieber CM (2015) Nanoscience and the nano-bioelectronics frontier. Nano Res 8:1–22CrossRefGoogle Scholar
  7. 7.
    Katz E (2014) Implantable bioelectronics. Wiley, HobokenCrossRefGoogle Scholar
  8. 8.
    Rivnay J, Owens RM, Malliaras GG (2014) The rise of organic bioelectronics. Chem Mater 26:679–685CrossRefGoogle Scholar
  9. 9.
    Parlak O, Turner APF (2016) Switchable bioelectronics. Biosens Bioelectron 76:251–265CrossRefGoogle Scholar
  10. 10.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  11. 11.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  12. 12.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  13. 13.
    Wick P, Louw-Gaume AE, Kucki M, Krug HF, Kostarelos K, Fadeel B, Dawson KA, Salvati A, Vazquez E, Ballerini L, Tretiach M, Benfenati F, Flahaut E, Gauthier L, Prato M, Bianco A (2014) Classification framework for graphene-based materials. Angew Chem Int Ed 53:7714–7718CrossRefGoogle Scholar
  14. 14.
    Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188CrossRefGoogle Scholar
  15. 15.
    Song H, Ni Y, Kokot S (2014) Investigations of an electrochemical platform based on the layered MoS2–graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosens Bioelectron 56:137–143CrossRefGoogle Scholar
  16. 16.
    Du J, Catania C, Bazan GC (2014) Modification of abiotic-biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem Mater 26:686–697CrossRefGoogle Scholar
  17. 17.
    Compton RG, Banks CE (2007) Understanding voltammetry. World Scientific, SingaporeCrossRefGoogle Scholar
  18. 18.
    Brownson DAC, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778CrossRefGoogle Scholar
  19. 19.
    Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976CrossRefGoogle Scholar
  20. 20.
    Xu C, Zhao CQ, Li M, Wu L, Ren JS, Qu XG (2014) Artificial evolution of graphene oxide chemzyme with enantioselectivity and near-infrared photothermal effect for cascade biocatalysis reactions. Small 10:1841–1847CrossRefGoogle Scholar
  21. 21.
    Parlak O, Tiwari A, Turner APF, Tiwari A (2013) Template-directed hierarchical self-assembly of graphene based hybrid structure for electrochemical biosensing. Biosens Bioelectron 49:53–62CrossRefGoogle Scholar
  22. 22.
    Morales-Narvaez E, Merkoci A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308CrossRefGoogle Scholar
  23. 23.
    Konkena B, Vasudevan S (2012) Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pK(a) measurements. J Phys Chem Lett 3:867–872CrossRefGoogle Scholar
  24. 24.
    Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang JX (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132:8180–8186CrossRefGoogle Scholar
  25. 25.
    Song YJ, Qu KG, Zhao C, Ren JS, Qu XG (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210CrossRefGoogle Scholar
  26. 26.
    Unnikrishnan B, Palanisamy S, Chen SM (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosens Bioelectron 39:70–75CrossRefGoogle Scholar
  27. 27.
    Yang K, Feng LZ, Shi XZ, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547CrossRefGoogle Scholar
  28. 28.
    Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798CrossRefGoogle Scholar
  29. 29.
    Zhirnov VV, Cavin RK (2015) Microsystems for bioelectronics: scaling and performance limits. Elsevier Science, AmsterdamGoogle Scholar
  30. 30.
    Min K, Yoo YJ (2014) Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnol Bioprocess Eng 19:553–567CrossRefGoogle Scholar
  31. 31.
    Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal Chem 86:752–757CrossRefGoogle Scholar
  32. 32.
    Ang PK, Jaiswal M, Lim CHYX, Wang Y, Sankaran J, Li A, Lim CT, Wohland T, Oezyilmaz B, Loh KP (2010) A bioelectronic platform using a graphene-lipid bilayer interface. ACS Nano 4:7387–7394CrossRefGoogle Scholar
  33. 33.
    Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL, Naik RR, Verma N, Omenetto FG, McAlpine MC (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763CrossRefGoogle Scholar
  34. 34.
    Axisa F, Schmitt PM, Gehin C, Delhomme G, McAdams E, Dittmar A (2005) Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans Inf Technol Biomed 9:325–336CrossRefGoogle Scholar
  35. 35.
    Urban G, Jobst G, Keplinger F, Aschauer E, Fasching R, Svasek P (1994) Miniaturized integrated biosensors. Technol Health Care: Official J Eur Soc Eng Med 1:215–218Google Scholar
  36. 36.
    Labroo P, Cui Y (2013) Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron 41:852–856CrossRefGoogle Scholar
  37. 37.
    Bocharova V, Katz E (2012) Switchable electrode interfaces controlled by physical, chemical and biological signals. Chem Rec 12:114–130CrossRefGoogle Scholar
  38. 38.
    Privman M, Tam TK, Pita M, Katz E (2009) Switchable electrode controlled by enzyme logic network system: approaching physiologically regulated bioelectronics. J Am Chem Soc 131:1314–1321CrossRefGoogle Scholar
  39. 39.
    Parlak O, Turner APF, Tiwari A (2014) On/off-switchable zipper-like bioelectronics on a graphene interface. Adv Mater 26:482–486CrossRefGoogle Scholar
  40. 40.
    Parlak O, Turner APF, Tiwari A (2015) pH-induced on/off-switchable graphene bioelectronics. J Mater Chem B 3:7434–7439CrossRefGoogle Scholar
  41. 41.
    Parlak O, Beyazit S, Tse Sum Bui B, Haupt K, Tiwari A, Turner APF (2015) Light-triggered switchable graphene–polymer hybrid bioelectronics. Adv Mater Interf 3(1500353)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations