Phase Response Properties of Rulkov Model Neurons

  • Karlis KandersEmail author
  • Ruedi Stoop
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)


Neurons communicate using patterns of impulses (action potentials); practically all these patterns can, upon suitably chosen parameters, be reproduced by Rulkov’s phenomenological, low-dimensional, map-based neuron models. Here, using phase response curves, we show that Rulkov map neurons also respond to transient pulse stimulation in a way that is compatible with the biological examples. This is important because Rulkov maps are computationally very inexpensive, allowing to perform large-scale simulations of the brain.


  1. 1.
    Rulkov, N.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65, 041922 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Rulkov, N.F., Timofeev, I., Bazhenov, M.: Oscillations in large-scale cortical networks: map-based model. J. Comput. Neurosci. 17, 203–223 (2004)CrossRefGoogle Scholar
  3. 3.
    Shilnikov, A.L., Rulkov, N.F.: Subthreshold oscillations in a map-based neuron model. Phys. Lett. A 328, 177–184 (2004)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)CrossRefGoogle Scholar
  5. 5.
    Girardi-Schappo, M., Tragtenberg, M.H.R., Kinouchi, O.: A brief history of excitable map-based neurons and neural networks. J. Neurosci. Methods 220, 116–130 (2013)CrossRefGoogle Scholar
  6. 6.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge (2007). Chapter 8Google Scholar
  7. 7.
    Long, L.N., Fang, G.: A Review of Biologically Plausible Neuron Models. AIAA Paper No. 2010-3540, AIAA InfoTech@Aerospace Conference (2010)Google Scholar
  8. 8.
    Glass, L., Mackey, M.C.: From Clocks to Chaos. Princeton University Press, Princeton (1988)zbMATHGoogle Scholar
  9. 9.
    Smeal, R.M., Ermentrout, G.B., White, J.A.: Phase-response curves and synchronized neural networks. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 2407–2422 (2010)Google Scholar
  10. 10.
    Hansel, D., Mato, G., Meunier, C.: Synchrony in excitatory neural networks. Neural Comput. 7, 307–337 (1995)CrossRefGoogle Scholar
  11. 11.
    Achuthan, S., Canavier, C.C.: Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. J. Neurosci. 29, 5218–5233 (2009)Google Scholar
  12. 12.
    Shilnikov, A.L., Rulkov, N.F.: Origin of chaos in a two-dimensional map modelling spiking-bursting neural activity. Int. J. Bifurcat. Chaos 13, 3325–3340 (2003)Google Scholar
  13. 13.
    Hounsgaard, J., Kiehn, O.: Ca++ dependent bistability induced by serotonin in spinal motoneurons. Exp. Brain Res. 57, 422–425 (1985)Google Scholar
  14. 14.
    Loewenstein, Y., Mahon, S., Chadderton, P., Kitamura, K., Sompolinsky, H., Yarom, Y., Häusser, M.: Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat. Neurosci. 8, 202–211 (2005)CrossRefGoogle Scholar
  15. 15.
    Hodgkin, A.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. 107, 165–181 (1948)CrossRefGoogle Scholar
  16. 16.
    Stiefel, K.M., Gutkin, B.S., Sejnowski, T.J.: Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PLoS One 3, e3947 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Tsubo, Y., Takada, M., Reyes, A.D., Fukai, T.: Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex. Eur. J. Neurosci. 25, 3429–3441 (2007)CrossRefGoogle Scholar
  18. 18.
    Prescott, S.A., De Koninck, Y., Sejnowski, T.J.: Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 4, e1000198 (2008)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Schindler, K.A., Bernasconi, C., Stoop, R., Goodman, P.H., Douglas, R.J.: Chaotic spike patterns evoked by periodic inhibition of rat cortical neurons. Z. Naturforsch 52, 509–512 (1997)ADSGoogle Scholar
  20. 20.
    Bernasconi, C.A., Schindler, K., Stoop, R., Douglas, R.: Complex response to periodic inhibition in simple and detailed neuronal models. Neural Comput. 11, 67–74 (1999)CrossRefGoogle Scholar
  21. 21.
    Stoop, R., Schindler, K., Bunimovich, L.A.: When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize. Neurosci. Res. 36, 81–91 (2000)CrossRefGoogle Scholar
  22. 22.
    Reyes, A., Fetz, E.: Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons. J. Neurophysiol. 69, 1673–1683 (1993)Google Scholar
  23. 23.
    Oprisan, S.A., Prinz, A.A., Canavier, C.C.: Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophys. J. 87, 2283–2298 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Martignoli, S., Stoop, R.: Phase-locking and Arnold coding in prototypical network topologies Discrete Cont. Dyn-B 9, 145–162 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Prescott, S.A., Ratté, S., De Koninck, Y., Sejnowski, T.J.: Pyramidal neurons switch from integrators in vitro to resonators under in vivo-like conditions. J. Neurophysiol. 100, 3030–3042 (2008)CrossRefGoogle Scholar
  26. 26.
    Reyes, A., Fetz, E.: Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons. J. Neurophysiol. 69, 1661–1672 (1993)Google Scholar
  27. 27.
    Gutkin, B.S., Ermentrout, G.B., Reyes, A.D.: Phase-response curves give the responses of neurons to transient inputs. J. Neurophysiol. 94, 1623–1635 (2005)CrossRefGoogle Scholar
  28. 28.
    Stoop, R., Schindler, K., Bunimovich, L.A.: Noise drive neocortical interaction: a simple generation mechanism for complex neuron spiking. Acta Biotheor. 48, 149–171 (2000)CrossRefGoogle Scholar
  29. 29.
    Stoop, R., Schindler, K., Bunimovich, L.A.: Neocortical networks of pyramidal neurons: from local locking and chaos, to global locking and synchronization. Nonlinearity 13, 1515–1529 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Neuroinformatics and Institute for Computational ScienceUniversity of ZürichZurichSwitzerland
  2. 2.ETH ZürichZurichSwitzerland

Personalised recommendations