Power Laws in Neuronal Culture Activity from Limited Availability of a Shared Resource

  • Damian Berger
  • Sunghoon Joo
  • Tom Lorimer
  • Yoonkey Nam
  • Ruedi Stoop
Conference paper

DOI: 10.1007/978-3-319-47810-4_17

Part of the Springer Proceedings in Physics book series (SPPHY, volume 191)
Cite this paper as:
Berger D., Joo S., Lorimer T., Nam Y., Stoop R. (2017) Power Laws in Neuronal Culture Activity from Limited Availability of a Shared Resource. In: Mantica G., Stoop R., Stramaglia S. (eds) Emergent Complexity from Nonlinearity, in Physics, Engineering and the Life Sciences. Springer Proceedings in Physics, vol 191. Springer, Cham

Abstract

We record spontaneous activity from a developing culture of dissociated rat hippocampal neurons in vitro using a multi electrode array. To statistically characterize activity, we look at the time intervals between recorded spikes, which, unlike neuronal avalanche sizes, do not require the selection of a time bin. The distribution of inter event intervals in our data approximate power laws at all recorded stages of development, with exponents that can be used to characterize the development of the culture. Synchronized bursting emerges as the culture matures, and these bursts show activity that decays approximately exponentially. From this, we propose a model for neuronal activity within bursts based on the consumption of a shared resource. Our model produces power law distributed avalanches in simulations, and is analytically demonstrated to produce power law distributed inter event intervals with an exponent close to that observed in our data. This indicates that power law distributions in neuronal avalanche size and other observables, can be also an artefact of exponentially decaying activity within synchronized bursts.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Damian Berger
    • 1
    • 3
  • Sunghoon Joo
    • 2
  • Tom Lorimer
    • 1
    • 3
  • Yoonkey Nam
    • 2
  • Ruedi Stoop
    • 1
    • 3
  1. 1.Institute of Neuroinformatics and Institute for Computational ScienceUniversity of ZürichZurichSwitzerland
  2. 2.Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Yuseong-gu, DaejeonRepublic of Korea
  3. 3.ETH ZürichZurichSwitzerland

Personalised recommendations