Skip to main content

Review of Quantum Mechanics

  • Chapter
  • First Online:
Theoretical Atomic Physics

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

Atomic phenomena are described mainly on the basis of non-relativistic quantum mechanics. Relativistic effects can generally be accounted for in a satisfactory way with perturbative methods. In the 1990s it became increasingly apparent, that a better understanding of the classical dynamics of an atomic system can lead to a deeper appreciation of various features in its observable quantum mechanical properties, see e.g. [RW94, CK97, FE97, BB97, SS98, BR09], Sect. 5.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is also common usage to express ϕ c in terms of the spherical Bessel functions of the second kind , y l (z) = −n l (z): ϕ c(kr) = −kry l (kr), cf. (A.51) in Appendix A.4.

  2. 2.

    We use the term “momentum representation” when we write the wave functions as functions of momentum p or as functions of wave number k = p.

References

  1. G. Baym, Lectures on Quantum Mechanics (Benjamin, New York, 1969)

    MATH  Google Scholar 

  2. M. Brack, R.K. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, 1997)

    MATH  Google Scholar 

  3. C. Bracher, M. Kleber, Ann. Phys. (Leipzig) 4, 696 (1995)

    Article  ADS  Google Scholar 

  4. M.V. Berry, K.E. Mount, Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 35, 315 (1972)

    Article  ADS  Google Scholar 

  5. R. Blümel, W.P. Reinhardt, Chaos in Atomic Physics (Cambridge University Press, Cambridge, 2009)

    MATH  Google Scholar 

  6. L.S. Cederbaum, K.C. Kulander, N.H. March (eds.), Atoms and Molecules in Intense Fields. Structure and Bonding, vol. 86 (Springer, Berlin, 1997)

    Google Scholar 

  7. C.A.A. de Carvalho, H.M. Nussenzveig, Phys. Reports 364, 83 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1960)

    MATH  Google Scholar 

  9. W. Elberfeld, M. Kleber, Am. J. Phys. 56, 154 (1988)

    Article  ADS  Google Scholar 

  10. H. Friedrich, B. Eckhardt (eds.), Classical, Semiclassical and Quantum Dynamics in Atoms. Lecture Notes in Physics, vol. 485 (Springer, Berlin, Heidelberg, New York, 1997)

    Google Scholar 

  11. N. Fröman, P.O. Fröman, JWKB Approximation (North Holland, Amsterdam, 1965)

    MATH  Google Scholar 

  12. N. Fröman, P.O. Fröman, Phase Integral Method. Springer Tracts in Modern Philosophy, vol. 40 (Springer, Berlin, Heidelberg, New York, 1996)

    Google Scholar 

  13. H. Friedrich, J. Trost, Phys. Rev. Lett. 76 4869 (1996); Phys. Rev. A 54, 1136 (1996)

    Google Scholar 

  14. H. Friedrich, J. Trost, Phys. Reports 397, 359 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Gasiorowicz, Quantum Physics (Wiley, New York, 1974)

    MATH  Google Scholar 

  16. M. Kleber, Phys. Reports 236, 331 (1994)

    Article  ADS  Google Scholar 

  17. L.D. Landau, E.M. Lifshitz, Classical Mechanics (Addison Wesley, Reading, 1958)

    MATH  Google Scholar 

  18. A. Messiah, Quantum Mechanics, vol. 1 (North Holland, Amsterdam, 1970)

    MATH  Google Scholar 

  19. P. Morse, H. Feshbach, Methods of Theoretical Physics, Part II (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  20. P.J. Mohr, D.B. Newell, B.N. Taylor, http://physics.nist.gov/cuu/Constants/index.html

  21. J.G. Muga, R. Sala Mayato, I.L. Egusqiza (eds.), Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734 (Springer, Berlin, Heidelberg, 2008)

    Google Scholar 

  22. R.G. Newton, Scattering Theory of Waves and Particles, 2nd edn. (Springer, Berlin, Heidelberg, New York, 1982)

    Book  MATH  Google Scholar 

  23. V.S. Olkhovsky, E. Recami, J. Jakiel, Phys. Reports 398, 133 (2004)

    Article  ADS  Google Scholar 

  24. M. Razavy, Quantum Theory of Tunneling (World Scientific, Singapore, 2003)

    Book  MATH  Google Scholar 

  25. H. Ruder, G. Wunner, H. Herold, F. Geyer, Atoms in Strong Magnetic Fields (Springer, Heidelberg, 1994)

    Book  Google Scholar 

  26. L.I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968)

    MATH  Google Scholar 

  27. F. Schwabl, Quantum Mechanics, 3rd edn. (Springer, Berlin, Heidelberg, New York, 2002)

    Book  MATH  Google Scholar 

  28. P. Schmelcher, W. Schweizer (eds.), Atoms and Molecules in Strong External Fields. In: Proceedings of the 172nd WE-Heraeus Seminar (Bad Honnef, 1997) (Plenum Publishing, New York, 1998)

    Google Scholar 

  29. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964)

    MATH  Google Scholar 

  30. E.P. Wigner, Phys. Rev. 98, 145 (1955)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Friedrich, H. (2017). Review of Quantum Mechanics. In: Theoretical Atomic Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-47769-5_1

Download citation

Publish with us

Policies and ethics