Skip to main content

Stem Cell Pool: What Are the Best Patterns for Cellular Therapy?

  • Chapter
  • First Online:
Animal and Plant Stem Cells

Abstract

This chapter will discuss origin, classification, features of stem cells and fundaments of stem cell therapy as the segment of cellular-based therapy. Generally, the Stem Cell (SC)—compartment is divided into embryonic and tissue specific or adult SCs. Paul Niehans, M.D., (1882–1971), the originator of cell therapy, wrote: “Cellular therapy is a method of treating the whole organism on a biological basis, capable of revitalizing the human organism with its trillions of cells by bringing to it those embryonic or young cells which it needs. Cells from all organs are at our disposal; the doctor’s art is to choose the right cells. Selective cellular therapy offers new life to the ailing or diseased organism.” The concept of very small embryonic-like stem cells (VSELs) and their phenotypic and functional characteristics are discussed in the light of recent conflicting data. The differences between two adult stem cell compartments (hematopoietic and non-hematopoietic) within the adult bone marrow, (BM) and distant organs are emphasized. The crucial criteria for distinction between these two different pools of stem cells {hematopoietic stem cells (HSCs)}, and VSELs, are presented “hallmarking” VSELs as a separate entity. A possible explanation for the presence of these cells in the adult bone marrow of humans and them impacting stem cell regenerative purposes are summarized, as they are also found in the cord blood (CB). Certain organs/tissues involvement in the VSEL generation and/or storage is also discussed. The experimental approach to this area is analysed, followed by brief description of separation, purification and identification of this cell population in mice and humans. The critical controversies in findings regarding VSELs within the overall stem cell concept/stemness are analysed in depth. The functional role and perspectives of stem cell therapy in the clinical arena using this existing stem cell primitive ancestor are envisioned with regard to their fundamental traits as a great challenge and inspiration for future studies.

Science investigates; religion interprets. Science gives man knowledge which is power; religion gives man wisdom which is control.

Martin Luther King, Jr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavlovic M, Balint B (2013) Stem cells and tissue engineering. Springer New York Heidelberg Dordrecht London. ISBN:978-1-4614-5505-9 (eBook)

    Google Scholar 

  2. Saltzman MW (2009) Biomedical Engineering Cambridge University Press, New York. ISBN: 978-0-521-840099-6 (hardback)

    Google Scholar 

  3. Ratajczak M, Ratajczak J, Shin DM, Wan W, Liu R, Masternak MM, Piotrowska K et al (2011) Higher number of stem cells in the bone marrow of circulating low Igf-1 level LaronDwarf novel view on Igf-1, stem cells and aging. Leukemia 25:29–733

    Google Scholar 

  4. Balint B, Todorović M, Jevtić M, Ostojić G, Ristanović E, Vojvodić D et al (2009) The use of stem cells for marrow repopulation and in the field of regenerative medicine. Mak Med Pregl 63(Suppl 75):12

    Google Scholar 

  5. Mayfield J, Pavlovic M (in press) Current Modalities and the implications of cancer stem cell engineering in oncological treatment. ART

    Google Scholar 

  6. Pavlovic M, Balint B (2006) The use of stem cells to repair the cardiac tissue. Anest Reanim Transfuziol 34:129–150

    Google Scholar 

  7. Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  Google Scholar 

  8. Neve RM et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  Google Scholar 

  9. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. P Natl A Sci 100(7):3983–3988

    Article  Google Scholar 

  10. Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  Google Scholar 

  11. Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    Google Scholar 

  12. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  Google Scholar 

  13. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry C (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33(5):907–921

    Article  Google Scholar 

  14. Dow J, Simkhovich BZ, Kedes L, Kloner RA (2005) Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc Res 67(2):301–307

    Article  Google Scholar 

  15. http://www.ncbi.nlm.nih.gov/pubmed/17645413

  16. http://www.intechopen.com/books/apoptosis-and-medicine/apoptosis-as-a-therapeutic-target-in-cancer-and-cancer-stem-cells-novel-strategies-and-futures-persp

  17. http://stemcells.nih.gov/info/Regenerative_Medicine/pages/2006chapter9.aspx

  18. Kucia M, Wojakowski W, Reca R, Machalinski B, Gozdzik J, Majka M, Baran J, Ratajczak J, Ratajczak MZ (2006) The migration of bone marrow-derived non-hematopoietic tissue commited stem cells is regulated in an SDF-1, HGF—LIF-dependent manner. Arch Immunol Ther Exp (Warsz) 1642290

    Google Scholar 

  19. Pavlović M (2008) VSELs concept: review MNE Medica, 1, pp 16–17, ref. p. 43

    Google Scholar 

  20. Pavlovic M (2014) Very small embryonic like cells (VSELs): Review and perspectives in the light of critical data and controversies. ART (in press)

    Google Scholar 

  21. Ratajzcak MZ, Kucia M, Reca R, Majka M et al (2004) Stem cell plasticity revised: CXR4 positive cells expressing mRNA for early muscle, liver and neural cells “hide out” in the bone marrow. Leukemia 19(1):29–40

    Article  Google Scholar 

  22. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4þSSEA-1þOct-4þ stem cells identified in adult bone marrow. Leukemia 20:857–869

    Article  Google Scholar 

  23. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007) Morphological and molecular characterization of novel population of CXCR4þ SSEA-4þOct-4þ very small embryonic-like cells purified from human cord blood—preliminary report. Leukemia 21:297–303

    Article  Google Scholar 

  24. Zuba-Surma E, Kucia M, Abdel-Latif A, Dawn B, Hall B, Singh R, Lillard JW, Ratajczak MZ (2007) Morphological characterization of very small embryonic- like stem cells (VSELs) by image stream system analysis. J Cell Mol Med 18031297

    Google Scholar 

  25. Zuba-Surma EK, Wu W, Ratajczak J, Kucia M, Ratajczak MZ (2008) Very small embryonic-like stem cells in adult tissues-Potential implications for ageing. Mech Ageing Dev (EPub ahead of print)

    Google Scholar 

  26. Ratajczak M, Zuba-Surma E, Machslinski B, Ratajczak J, Kucia M (2008) Very Small Embryonic-Like (VSEL) Stem cells: purification from adult organs, characterization, and biological significance. Stem Cell Rev 18459073

    Google Scholar 

  27. Kucia M, Wysoczynski M, Ratajczak J, Ratajczak MZ (2008) Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tiss Res 331:125–134

    Article  Google Scholar 

  28. Suszynska M, Zuba-Surma EK, Maj M, Mierzejewska K, Ratajczak J, Kucia M, Ratajczak MZ (2014) the proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Dev [Epub ahead of print]

    Google Scholar 

  29. Ratajczak M et al (2012) Very small embryonic/epiblast like stem cells (VSELs) and their potential role in aging and organ rejuvenation-an update and comparison to other primitive small stem cells isolated from adult tissues. AGIGMG 4(4):235–246

    Google Scholar 

  30. Rodgerson DO, Ratajczak M (2011) http://www.neostem.com/assets/ Where do stem cells come from. Pdf (Denis Rodgerson DO, and Harris AGA). Comparison of stem cells for therapeutic use. Stem Cell Reviews and Reports. Published online

  31. Kassmer SH, Bruscia EM, Zhang PX, Krause DS (2012) Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells 30(3):491–499

    Article  Google Scholar 

  32. Kassmer SH, Krause DS (2013) Very small embryonic-like cells: biology and function of these potential endogenous pluripotent stem cells in adult tissues. Mol Reprod Dev 80:677–690

    Article  Google Scholar 

  33. Kassmer SH, Jin H, Zhang P-X, Bruscia EM, Heydari K, Lee JH, Kim CF, Kassmer SH (2013) very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells 31(12):2759–2766

    Article  Google Scholar 

  34. Bhartiya D (2013) Are mesenchymal cells indeed pluripotent stem cells or just stromal cells? OCT-4 and VSELs Biology Has Led to Better Understanding. Stem Cells Int 547501. Epub Review

    Google Scholar 

  35. Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S (2016) Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 1–36

    Google Scholar 

  36. Bhartiya D, Sriraman K, Parte S, Patel HJ (2013) Ovarian stem cells: absence of evidence is not evidence of absence. Ovarian Res 6(1): 65.13 [Epub ahead of print]

    Google Scholar 

  37. Bhartiya D, Unni S, Parte S, Anand S (2013) Very small embryonic-like stem cells: implications in reproductive biology. Biomed Res Int 682326. Epub. Review

    Google Scholar 

  38. Bhartiya D, Kasiviswananthan S, Shaikh A (2012) Cellular origin of testis-derived pluripotent stem cells: a case for very small embryonic-like stem cells. Stem Cells Dev 20;21(5):670–4

    Google Scholar 

  39. Bhartiya D, Shaikh A, Nagvenkar P, Kasiviswanathan S, Pethe P, Pawani H, Mohanty S, Rao SG, Zaveri K, Hinduja I (2012) Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Dev 21(1):1–6

    Article  Google Scholar 

  40. Wang J, Guo X, Lui M, Chu PJ, Yoo J, Chang M, Yen Y (2014) Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro. PLoS ONE 9(1):e85112

    Article  Google Scholar 

  41. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J, Halasa M, Krol M, Kazmierski M et al (2009) Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53:1–9

    Article  Google Scholar 

  42. Chang YJ, Tien KF, Wen CH, Hsieh TB, Hwang SM (2013) Recovery of CD45-/Lin-/SSEA-4+ very small embryonic-like stem cells by cord blood bank standard operating procedures. Cytotherapy [Epub ahead of print]

    Google Scholar 

  43. Knoepfler P, Stem Cell Blog/:http://www.ipscell.com/tag/russell-taichman/ Taichman Are VSELs the Sasquatch of the Stem Cell Field? Posted 2

  44. Szade K, Bukowska-Strakova K, Nowak WN, Szade A, Kachamakova-Trojanowska N, Zukowska M, Jozkowicz A, Dulak J (2013) Murine bone marrow Lin− Sca-1+ CD45− very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. PLoS One 8(5):e63329. Published online

    Google Scholar 

  45. Miyanishi M, Mori Y, Seita J, Chen JY, Karten S, Chan CKF, Nakauchi H, Weissman IL (2013) Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Rep 1(2):198–208

    Article  Google Scholar 

  46. DʼIpolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiler PC (2004) Marrow-isolated adult, multilineage inducible (MIAMI) cells, a unique population of postnatal and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    Article  Google Scholar 

  47. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49

    Article  Google Scholar 

  48. Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, Kusano K, Hanley A, Scadova H, Asahara T, Losordo DW (2005) Clonally expanded novel population of multipotent stem cells derived from human bone marrow regenerates myocardium after myocardial infarction. J Clin Invest 115:326–338

    Article  Google Scholar 

  49. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(3):209–218

    Google Scholar 

  50. Huss R et al (2000) Perspectives on the morphology and biology of CD34-negative stem cells. J Hematother Stem Cell Res. 9(6):783–793

    Article  Google Scholar 

  51. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2(6):477–488

    Article  Google Scholar 

  52. Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzl M, Lucas PA, Black AC Jr (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264(1):51–62

    Article  Google Scholar 

  53. Ratajczak J, Kucia M, Reca R, Zhang J, Machalinski B, Ratajczak MZ (2003) Quiescent CD34+ early erythroid progenitors are resistant to several erythropoietic “inhibitory” cytokines; role of FLIP. Br J Haematol 123(1):160–169

    Article  Google Scholar 

  54. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  Google Scholar 

  55. Ivanovic Z, Kovacevic-Filipovic M, Jeanne M, Ardilouze L, Bertot A, Szyporta M, Hermitte F, Lafarge X, Duchez P, Vlaski M, Milpied N, Pavlovic M, Praloran V, Boiron JM (2010) CD34+ cells obtained from “good mobilizers” are more activated and exhibit lower ex vivo expansion efficiency than their counterparts from “poor mobilizers”. Transfusion 50(1):120–127

    Article  Google Scholar 

  56. Kucia MJ, Wysoczynski M, Wu W (2008) Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 26:2083–2092

    Article  Google Scholar 

  57. Korbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, Champlin RE, Estrov Z (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. New Engl J Med 346:738–746

    Article  Google Scholar 

  58. Kucia M, Masternak M, Liu R, Shin DM, Ratajczak J, Mierzejewska K et al (2013) The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). Age (Dordr) 35:315–330

    Article  Google Scholar 

  59. Kucia M, Shin DM, Liu R, Ratajczak J, Bryndza E, Masternak MM et al (2011) Reduced number of VSELs in the bone marrow of growth hormone transgenic mice indicates that chronically elevated Igf1 level accelerates age-dependent exhaustion of pluripotent stem cell pool: a novel view on aging. Leukemia 25:1370–1374

    Article  Google Scholar 

  60. Ratajczak MZ, Shin DM, Kucia M (2009) Very small embryonic/epiblast-like stem cells: a missing link to support the germ line hypothesis of cancer development? Am J Pathol 174(6):1985–92. Epub. Review

    Google Scholar 

  61. Shin DM, Liu R, Klich I, Ratajczak J, Kucia M, Ratajczak MZ (2010) Molecular characterization of isolated from murine adult tissues very small embryonic/epiblast like stem cells (VSELs). Mol Cells 29(6):533–538

    Article  Google Scholar 

  62. Ratajczak MZ, Liu R, Ratajczak J, Kucia M, Shin DM (2011) The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differ Mar 81(3):153–61

    Google Scholar 

  63. Ratajczak MZ, Liu R, Marlicz W, Blogowski W, Starzynska T, Wojakowski W, Zuba-Surma E (2011) Identification of very small embryonic/epiblast-like stem cells (VSELs) circulating in peripheral blood during organ/tissue injuries. Methods Cell Biol 103:31–54

    Article  Google Scholar 

  64. Ratajczak MZ, Zuba-Surma EK, Shin DM, Ratajczak J, Kucia M (2008) Very small embryonic-like (VSEL) stem cells in adult organs and their potential role in rejuvenation of tissues and longevity. Exp Gerontol 43(11):1009–1017

    Article  Google Scholar 

  65. Ratajczak MZ, Liu R, Marlicz W, Blogowski TS, Wojakowski W, Zuba-Surma E (2011) Identification of very small embryonic/epiblast-like stem cells (VSELs) circulating in peripheral blood during organ/tissue injuries methods in cell biology—METHOD CELL. BIOL 103:31–54

    Google Scholar 

  66. Ratajczak MZ, Liu R, Ratajczak J, Kucia M, Shin DM (2011) The role of pluripotent embryonic-like stem cells residing in adult tissues in regeneration and longevity. Differ 81(3):153–61

    Google Scholar 

  67. Ratajczak MZ, Zuba-Surma E, Wojakowski W, Synska M, Mierzejewska K, Liu R, Ratajczak J, Shin M, Kucia M (2013) Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia 1–12

    Google Scholar 

  68. Suszynska M, Zuba-Surma EK, Maj M, Mierzejewska K, Ratajczak J, Kucia M, Ratajczak MZ (2014) The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Dev 23(5):1–13

    Google Scholar 

  69. Havens AH, Shiozawa SY, Jung Y, Wang J, Mishra A, Jiang Y, O’Neill DW, Krebsbach PH et al (2013) Human and murine very small embryonic-like (VSEL) cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev [Epub ahead of print]

    Google Scholar 

  70. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5(11):1471–1476

    Article  Google Scholar 

  71. Zipori D (2009) Biology of stem cells and the molecular basis of the stem state. Humana press, ISBN:160761295

    Google Scholar 

  72. Zipori D (2011) À la recherche d’une définition moléculaire plus que descriptive pour les cellules souches. Towards a molecular rather than a descriptive definition of stemness. Med Sci (Paris) 27:303–307

    Article  Google Scholar 

  73. Ramalho-Santos M et al (2002) Stemness: transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600

    Article  Google Scholar 

  74. http://www.nature.com/nature/focus/cancerstemcells/

  75. Martins AM, Vunjak-Novakovic G, Reis RL (2014) The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem cell Rev and Rep 10:177–190

    Google Scholar 

  76. Yamanaka S. (2010) Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 7(1)

    Google Scholar 

  77. Novakovic-Vunjak G, Scaden DT (2011) Biomimetic platforms for human stem cell research. Cell Stem Cell 8(3):252–261

    Article  Google Scholar 

  78. Balint B, Stamatović D, Todorović M, Jevtić M, Ostojić G, Pavlović M, Lojpur Z, Jocić M (2007) Stem cells in the arrangement of bone marrow repopulation and regenerative medicine. Vojnosanit Pregl 64(7):481–484

    Article  Google Scholar 

  79. Obradovic S, Rusovic S, Dincic D, Gligic B, Baskot B, Balint B et al (2003) Autologous pluripotent progenitor cells in the treatment of ischemic heart disease. Vojnosanit Pregl 60(6):725–31. Review. Serbian. No abstract available

    Google Scholar 

  80. Venkatraman AX, He C, Thorvaldsen JL, Sugimura R, Perry JM, Tao F, Zhao M, Christenson MK, Sanchez R et al (2013) Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500:345–349

    Article  Google Scholar 

  81. Balint B, Ivanović Z, Petakov M, Taseski J, Jovčić G, Stojanović N, Milenković P (1999) The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of marrow repopulating ability. Bone Marrow Transplant 23(6):613–639

    Article  Google Scholar 

  82. Balint B, Jovicic-Gojkov D, Todorovic-Balint M, Subota V, Pavlovic M, Goodrich R (2013) Plasma constituent integrity in pre-storage vs. post-storage riboflavin and UV-light treatment—a comparative study. Transfus Apher Sci 49(3):434–9. Epub

    Google Scholar 

  83. Balint B, Pavlovic M, Todorovic M, Jevtic M, Ristanovic E, Ignjatovic L (2010) The use of original ex vivo immunoadsorption and “multi-manner” apheresis in ABO/H-mismatched kidney transplants—a phase II clinical study. Transfus Apher Sci. 43(2):141–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Pavlović .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pavlović, M., Radotić, K. (2017). Stem Cell Pool: What Are the Best Patterns for Cellular Therapy?. In: Animal and Plant Stem Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-47763-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47763-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47761-9

  • Online ISBN: 978-3-319-47763-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics