Skip to main content

Concept of Targeted Cancer Stem Cell Therapy and New Versions

  • Chapter
  • First Online:
Animal and Plant Stem Cells

Abstract

The concept of cancer stem cells has inevitably inspired the concept of targeted CSC therapy. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. This concept envisions CSC as a unique target that should be destroyed with either physical, pharmacological, immunological, or even combined modalities, which do not affect normal cells. This chapter is a consideration of novel strategies aimed at targeting CSCs. The ideas discussed in this review can be summarized as a set of propositions for novel therapeutic approach.

If you want to find the secrets of the universe, think in terms of energy, frequency and vibration.

Nikola Tesla

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17(2):211–5

    Article  Google Scholar 

  2. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–7

    Article  Google Scholar 

  3. Li C, Lee CJ, Simeone DM (2009) Identification of human pancreatic cancer stem cells. Cancer Stem Cells 161–173 (Humana Press)

    Google Scholar 

  4. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Natl Acad Sci 100(7):3983

    Article  Google Scholar 

  5. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–8

    Article  Google Scholar 

  6. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–8

    Google Scholar 

  7. Gugjoo MB, Amarpal S, Ahmad SR, Yatoo MA, Ahsan-ul-Haq S (2012) Cancer stem cell. Int J Livestock Res 2(3):215–8

    Google Scholar 

  8. Williams JL (2012) Cancer stem cells. Clinical laboratory science. J Am Soc Med Tech 25(1):50

    Google Scholar 

  9. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg R et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–59

    Article  Google Scholar 

  10. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–12

    Article  Google Scholar 

  11. Yuan S, Wang F, Chen G, Zhang H, Feng L, Wang L, Colman H, Keating MJ, Li X, Xu RH, Wang J, Huang P (2013) Effective elimination of cancer stem cells by a novel drug combination strategy. Stem Cells 31(1):23–34

    Article  Google Scholar 

  12. Song CW, Griffin R, and Park HJ (2006) Influence of tumor pH on therapeutic response. In: Teicher B (ed) Cancer drug discovery and development: cancer drug resistance, Humana Press Inc, Totowa, pp 21–40

    Google Scholar 

  13. Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532

    Article  Google Scholar 

  14. Rossi DJ, Jamieson CHM, and Weissman IL (2008) Stems Cells and the Pathways to Aging and Cancer. Cell 132, 681–696, Elsevier Inc

    Google Scholar 

  15. Shukrun R, Pode Shakked N, Dekel B (2013) Targeted therapy aimed at cancer stem cells: Wilms’ tumor as an example. Pediatr Nephrol 29(5):815–823

    Google Scholar 

  16. Yuan S, Wang F, Chen G, Zhang H, Feng L, Wang L, Colman H, Keating MJ, Li X, Xu RH, Wang J, Huang P (2013) Effective elimination of cancer stem cells by a novel drug combination strategy. Stem Cells 1:23–34

    Article  Google Scholar 

  17. Pathania D, Millard M, Neamati N (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 61:1250–1275

    Article  Google Scholar 

  18. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–43

    Google Scholar 

  19. Al-Sarraf M, Martz K, Herskovic A, Leichman L, Brindle JS, Vaitkevicius VK et al (1997) Progress report of combined chemoradiotherapy versus radiotherapy alone in patients with esophageal cancer: an intergroup study. J Clin Oncol 15(1):277–284

    Google Scholar 

  20. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–11

    Article  Google Scholar 

  21. Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment. Cancer 104(6):1129–37

    Article  Google Scholar 

  22. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298(5593):597–600

    Article  Google Scholar 

  23. Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev Genet 5(11):1471

    Article  Google Scholar 

  24. Gil J, Stembalska A, Pesz KA, Sasiadek MM (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J of Appl Genet 49(2):193

    Article  Google Scholar 

  25. Singh A, Settleman JEMT (2010) Cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741–51

    Article  Google Scholar 

  26. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N et al (2009) A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell 15(6):489–500

    Article  Google Scholar 

  27. Lu B, Chiou SH, Deutsch E, Lorico A (2011) Cancer Stem Cells. J Oncol 1

    Google Scholar 

  28. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–3

    Article  Google Scholar 

  29. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324(5935):1670–73

    Article  Google Scholar 

  30. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5):822–9

    Article  Google Scholar 

  31. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69(19):7507–11

    Article  Google Scholar 

  32. Gilbert SC (2012) T-cell-inducing vaccines—what’s the future. Immunology 135:19–26

    Article  Google Scholar 

  33. Jachetti E, Mazzoleni S, Grioni M, Ricupito A, Brambillasca C, Generoso L et al (2013) Prostate cancer stem cells are targets of both innate and adaptive immunity and elicit tumor-specific immune responses. Oncoimmunology 2(5):e24520

    Article  Google Scholar 

  34. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649

    Article  Google Scholar 

  35. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771

    Article  Google Scholar 

  36. Gaitanis A, Staal S (2010) Liposomal doxorubicin and nab-paclitaxel: nanoparticle cancer chemotherapy in current clinical use. Cancer nanotechnology. Humana Press, pp 385–392

    Google Scholar 

  37. Graishar WJ, Tjulndin S, Davidson N, Shaw H, Desai N, Bhar P et al (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–803

    Article  Google Scholar 

  38. Farokhzad OC, Jon S, Khademhosseini A, Tran TNT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–72

    Article  Google Scholar 

  39. Han L, Shi S, Gong T, Zhang Z, Sun X (2013) Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sinica B 3(2):65–75

    Article  Google Scholar 

  40. Zimmerman JW, Jimenez H, Pennison JM et al (2013) Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude modulated at tumor specific frequencies. Chin J Cancer 32(11):573–581

    Article  Google Scholar 

  41. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y et al (2004) Disruption of cancer cell replication by alternating electric fields. Cancer Res 64(9):3288–95

    Article  Google Scholar 

  42. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V et al (2012) NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer 48(14):2192–202

    Article  Google Scholar 

  43. Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7:12728–12736

    Article  Google Scholar 

  44. Villasante A, Vunjak–Novakovic G (2015) Bioengineered tumors. Bioengineered. To link to this article: http://dx.doi.org/10.1080/21655979.2015.1011039

  45. Villasante A, Vunjak–Novakovic G (2015) Tissue–engineered models of human tumors for cancer research. Expert Opin. Drug discov 10(3):257–268

    Google Scholar 

  46. Kimlin LC, Casagrande G, Virador VM (2013) In vitro three–dimensional (3–D) models in cancer research: an update. Mil Carcinog 52:167–82

    Article  Google Scholar 

  47. Villasante A, Marturano–Kruik A, Vunjakovic–Novak G (2014) Bioengineered human tumor within a bone niche. Biomaterials, 35:584–94

    Google Scholar 

  48. Ambrose J, Livitz M, Wessels D, Kuhl S, Lusche DF, Scherer A, Voss E (2015) Mediated coalescence: a possible mechanism for tumor cellular heterogeneity. Am J Cancer Res 5(11):3485–3504

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Pavlović .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pavlović, M., Radotić, K. (2017). Concept of Targeted Cancer Stem Cell Therapy and New Versions. In: Animal and Plant Stem Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-47763-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47763-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47761-9

  • Online ISBN: 978-3-319-47763-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics