Skip to main content

Antibiotics and Antibiotic Resistance Genes (ARGs) in Soil: Occurrence, Fate, and Effects

  • Chapter
  • First Online:
Xenobiotics in the Soil Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

Pharmaceuticals (VPs) are used in large amounts to protect human health and reduce diseases and promote growth for livestock and poultry in farms. Due to their use pattern, they possess a potential for reaching the soil environment where they develop resistance and can impact the soil ecosystem services. The environmental pollution and health risks caused by the antibiotics and antibiotic resistance genes (ARGs) have become urgent issues all over the world. This chapter provides a comprehensive overview of the occurence of antibiotics and ARGs in soil. The fate of antibiotics such as photodegradation, bioremediation, chemical treatments, etc., was discussed in detail. ARGs’ occurrence and their mechanism (horizontal and vertical) of transfer into soil ecosystem were reviewed. We review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and the evolution of environmental microbial populations. The chapter could be helpful to university teachers, students, and management authorities for the management and to develop the policy for the new emerging environmental contaminates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aminov RI, Mackie RI (2007) Evolution and ecology of antibiotic resistance genes. FEMS Micro Lett 271:147–161

    Article  CAS  Google Scholar 

  • Baquero F, Negri M, Morosini M, Blazquez J (2008) The antibiotic selective process: concentration-specific amplification of low-level resistant populations. Antibiotic resistance: origins, evolution, selection and spread. Ciba Found Symp 787:93

    Google Scholar 

  • Bialk HM, Hedman C, Castillo A, Pedersen JA (2007) Laccase-mediated Michael addition of 15N-sulfapyridine to a model humic constituent. Environ Sci Tech 41:3593–3600

    Article  CAS  Google Scholar 

  • Boxall A, Fogg L, Blackwell P, Blackwell P, Kay P, Pemberton E, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91

    CAS  PubMed  Google Scholar 

  • Burch TR, Sadowsky MJ, LaPara TM (2014) Fate of antibiotic resistance genes and class 1 integrons in soil microcosms following the application of treated residual municipal wastewater solids. Environ Sci Tech 48:5620–5627

    Article  CAS  Google Scholar 

  • Butler MS, Buss AD (2006) Natural products—the future scaffolds for novel antibiotics? Biochem Pharm 71:919–929

    Article  CAS  PubMed  Google Scholar 

  • Byrne-Bailey K, Gaze WH, Kay P, Boxall A, Hawkey PM, Wellington EM (2009) Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrob Agents Chemother 53:696–702

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang M (2013) Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. Environ Intern 55:9–14

    Article  CAS  Google Scholar 

  • Chen Y, Hu C, Qu J, Yang M (2008) Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation. J Photochem Photobiol A Chem 197:81–87

    Article  CAS  Google Scholar 

  • Dalkmann P, Willaschek E, Schiedung H, Bornemann L, Siebe C, Siemens J (2014) Long-term wastewater irrigation reduces sulfamethoxazole sorption, but not ciprofloxacin binding, in Mexican soils. J Environ Qual 43:964–970

    Article  PubMed  Google Scholar 

  • Diggins FW (1999) The true history of the discovery of penicillin, with refutation of the misinformation in the literature. Br J Biomed Sci 56:83

    CAS  PubMed  Google Scholar 

  • Doretto KM, Rath S (2013) Sorption of sulfadiazine on Brazilian soils. Chemosphere 90:2027–2034

    Article  CAS  PubMed  Google Scholar 

  • Du L, Liu W (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron Sustain Dev 32:309–327

    Article  CAS  Google Scholar 

  • Elmund GK, Morrison S, Grant D, Nevins M (1971) Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bull Environ Contam Toxicol 6:129–132

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt I, Sittig S, Šimůnek J, Groeneweg J, Pütz T, Vereecken H (2015) Fate of the antibiotic sulfadiazine in natural soils: experimental and numerical investigations. J Contam Hydrol 177:30–42

    Article  PubMed  Google Scholar 

  • Fang H, Han Y, Yin Y, Pan X, Yu Y (2014) Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil. Chemosphere 96:51–56

    Article  CAS  PubMed  Google Scholar 

  • Felizeter S, McLachlan MS, de Voogt P (2012) Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environ Sci Tech 46:11735–11743

    Article  CAS  Google Scholar 

  • Forster M, Laabs V, Lamshöft M, Groeneweg J, Zühlke S, Spiteller M, Krauss M, Kaupenjohann M, Amelung M (2009) Sequestration of manure-applied sulfadiazine residues in soils. Environ Sci Tech 43:1824–1830

    Article  CAS  Google Scholar 

  • Garrod LP, O’grady F (1968) Antibiotics & chemotherapy. Edinburgh University Press, Livingstone

    Google Scholar 

  • Giang CND, Sebesvari Z, Renaud F, Rosendahl I, Minh QH, Amelung W (2015) Occurrence and dissipation of the antibiotics sulfamethoxazole, sulfadiazine, trimethoprim, and enrofloxacin in the Mekong Delta, Vietnam. PLoS One 10:e0131855

    Article  Google Scholar 

  • Gillings MR (2013) Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol 4

    Google Scholar 

  • Gottlieb D (1976) The production and role of antibiotics in soil. J Antibio 29:987–1000

    Article  CAS  Google Scholar 

  • Grote M, Schwake-Anduschus C, Michel R, Stevens H, Heyser W, Lan G, Betsche T, Freitag M (2007) Incorporation of veterinary antibiotics into crops from manured soil. Landbauforschung Volkenrode 57:25–32

    CAS  Google Scholar 

  • Gulkowska A, Sander M, Hollender J, Krauss M (2013) Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability. Environ Sci Technol 47:6916–6924

    Article  CAS  PubMed  Google Scholar 

  • Hamscher G, Mohring SA (2012) Veterinary drugs in soil and in the aquatic environment. Chem Ing Tech 84:1052–1061

    Article  CAS  Google Scholar 

  • Hamscher G, Pawelzick HT, Sczesny S, Nau H, Hartung J (2003) Antibiotics in dust originating from a pig-fattening farm: a new source of health hazard for farmers? Environ Health Perspect 111:1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann M, Kümmel A, Ruinatscha R, Panke S (2005) In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng 92:850–864

    Article  CAS  PubMed  Google Scholar 

  • Heuer H, Focks A, Lamshöft M, Smalla K, Matthies M, Spiteller M (2008) Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacterial resistance genes in manure and manured soil. Soil Biol Biochem 40:1892–1900

    Article  CAS  Google Scholar 

  • Heuer H, Solehati Q, Zimmerling U, Kleineidam K, Schloter M, Müller T, Focks A, Thiele-Bruhn S, Smalla K (2011) Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl Environ Microbiol 77:2527–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingerslev F, Halling-Sørensen B (2000) Biodegradability properties of sulfonamides in activated sludge. Environ Toxicol Chem 19:2467–2473

    Article  CAS  Google Scholar 

  • Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22:536–545

    Article  CAS  PubMed  Google Scholar 

  • Joy SR, Bartelt-Hunt SL, Snow DD, Gilley JE, Woodbury BL, Parker DB, Marx DB, Li X (2013) Fate and transport of antimicrobials and antimicrobial resistance genes in soil and runoff following land application of swine manure slurry. Environ Sci Technol 47:12081–12088

    Article  CAS  PubMed  Google Scholar 

  • Joy SR, Li X, Snow DD, Gilley JE, Woodbury B, Bartelt-Hunt SL (2014) Fate of antimicrobials and antimicrobial resistance genes in simulated swine manure storage. Sci Total Environ 481:69–74

    Article  CAS  PubMed  Google Scholar 

  • Junge T, Claßen N, Schäffer A, Schmidt B (2012) Fate of the veterinary antibiotic 14C-difloxacin in soil including simultaneous amendment of pig manure with the focus on non-extractable residues. J Environ Sci Health Part B 47:858–868

    Article  CAS  Google Scholar 

  • Karcı A, Balcıoğlu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407:4652–4664

    Article  PubMed  Google Scholar 

  • Kasteel R, Mboh CM, Unold M, Groeneweg J, Vanderborght J, Vereecken H (2010) Transformation and sorption of the veterinary antibiotic sulfadiazine in two soils: a short-term batch study. Environ Sci Technol 44:4651–4657

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88:1999–2012

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Chander Y, Singh AK (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87:1–54

    Article  CAS  Google Scholar 

  • Kümmerer K (2008a) Antibiotics in the environment. In: Kümmerer K (ed) Pharmaceuticals in the environment. Springer, Heidelberg, pp 75–93

    Chapter  Google Scholar 

  • Kümmerer K (2008b) Pharmaceuticals in the environment – a brief summary. In: Kümmerer K (ed) Pharmaceuticals in the environment. Springer, Heidelberg, pp 3–21

    Chapter  Google Scholar 

  • Lamshöft M, Sukul P, Zühlke S, Spiteller M (2010) Behaviour of 14 C-sulfadiazine and 14 C-difloxacin during manure storage. Sci Total Environ 408:1563–1568

    Article  PubMed  Google Scholar 

  • Li B, Zhang T (2011) Mass flows and removal of antibiotics in two municipal wastewater treatment plants. Chemosphere 83:1284–1289

    Article  PubMed  Google Scholar 

  • Mainardi J-L, Villet R, Bugg TD, Mayer C, Arthur M (2008) Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 32:386–408

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martínez-Solano L, Sánchez MB (2009) A global view of antibiotic resistance. FEMS Microbiol Rev 33:44–65

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579

    Article  PubMed  Google Scholar 

  • Martinez-Fleites C, Proctor M, Roberts S, Bolam DN, Gilbert HJ, Davies GJ (2006) Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4. Chem Biol 13:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM (2012) Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 78:3214–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowara A, Burhenne J, Spiteller M (1997) Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. J Agric Food Chem 45:1459–1463

    Article  CAS  Google Scholar 

  • Osol A, Remington JP (1980) Remington’s pharmaceutical sciences. Mack, Easton

    Google Scholar 

  • Ostermann A, Siemens J, Welp G, Xue Q, Lin X, Liu X, Amelung W (2013) Leaching of veterinary antibiotics in calcareous Chinese croplands. Chemosphere 91:928–934

    Article  CAS  PubMed  Google Scholar 

  • Ozaki N, Bester K, Moldrup P, Henriksen K, Komatsu T (2011) Photodegradation of the synthetic fragrance OTNE and the bactericide triclosan adsorbed on dried loamy sand – results from models and experiments. Chemosphere 83:1475–1479

    Article  CAS  PubMed  Google Scholar 

  • Pei R, Kim S-C, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435

    Article  CAS  PubMed  Google Scholar 

  • Picó Y, Andreu V (2007) Fluoroquinolones in soil—risks and challenges. Anal Bioanal Chem 387:1287–1299

    Article  PubMed  Google Scholar 

  • Pignatello JJ, Xing B (1995) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    Article  Google Scholar 

  • Podojil M, Blumauerova M, Vanek Z, Culik K (1984) The tetracyclines: properties, biosynthesis, and fermentation. In: Vandamme EJ (ed) Drugs and the pharmaceutical sciences. Marcel Dekker, New York

    Google Scholar 

  • Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl I, Siemens J, Kindler R, Groeneweg J, Zimmermann J, Czerwinski S, Lamshöft M, Laabs V, Wilke BM, Vereecken H, Amelung W (2012) Persistence of the fluoroquinolone antibiotic difloxacin in soil and lacking effects on nitrogen turnover. J Environ Qual 41:1275–1283

    Article  CAS  PubMed  Google Scholar 

  • Sabourin L, Duenk P, Bonte-Gelok S, Payne M, Lapen DR, Topp E (2012) Uptake of pharmaceuticals, hormones and parabens into vegetables grown in soil fertilized with municipal biosolids. Sci Total Environ 431:233–236

    Article  CAS  PubMed  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  PubMed  Google Scholar 

  • Schaffer M, Boxberger N, Börnick H, Licha T, Worch E (2012) Sorption influenced transport of ionizable pharmaceuticals onto a natural sandy aquifer sediment at different pH. Chemosphere 87:513–520

    Article  CAS  PubMed  Google Scholar 

  • Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229

    Article  PubMed  Google Scholar 

  • Srinivasan P, Sarmah AK (2014) Assessing the sorption and leaching behaviour of three sulfonamides in pasture soils through batch and column studies. Sci Total Environ 493:535–543

    Article  CAS  PubMed  Google Scholar 

  • Sukul P, Spiteller M (2007) Fluoroquinolone antibiotics in the environment. In: Sukul P (ed) Reviews of environmental contamination and toxicology. Springer, Berlin, pp 131–162

    Chapter  Google Scholar 

  • Tang X, Lou C, Wang S, Lu Y, Liu M, Hashmi MZ, Liang X, Li Z, Liao Y, Qin W, Fan F, Xu J, Brookes PC (2015) Effects of long-term manure applications on the occurrence of antibiotics and antibiotic resistance genes (ARGs) in paddy soils: evidence from four field experiments in south of China. Soil Biol Biochem 90:179–187

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils – a review. J Plant Nutr Soil Sci 166:145–167

    Article  CAS  Google Scholar 

  • Thomashow LS, Bonsall RF, Weller DM (1997) Antibiotic production by soil and rhizosphere microbes in situ manual of environmental microbiology. ASM Press, Washington, DC, pp. 493–499

    Google Scholar 

  • Yang W, Lu Y, Zheng F, Xue X, Li N, Liu D (2012) Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chem Eng J 179:112–118

    Article  CAS  Google Scholar 

  • Zhao L, Dong YH, Wang H (2010) Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci Total Environ 408:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Zhou LJ, Ying GG, Liu S, Zhao JL, Chen F, Zhang RQ, Peng FQ, Zhang QQ (2012) Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography – electrospray ionization tandem mass spectrometry. J Chroma A 1244:123–138

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The Research was funded by TWAS-COMSTECH Research award_15-384 RG/ENG/AS_C and HEC Start Up Research Grant 21-700/SRGP/R&D/HEC/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zaffar Hashmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hashmi, M.Z., Mahmood, A., Kattel, D.B., Khan, S., Hasnain, A., Ahmed, Z. (2017). Antibiotics and Antibiotic Resistance Genes (ARGs) in Soil: Occurrence, Fate, and Effects. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_4

Download citation

Publish with us

Policies and ethics