Skip to main content

Impact of Biochar on Soil Fertility and Behaviour of Xenobiotics in Soil

  • Chapter
  • First Online:
  • 1538 Accesses

Part of the book series: Soil Biology ((SOILBIOL,volume 49))

Abstract

The different xenobiotic compounds, such as insecticides, fungicides, herbicides, chlorinated derivatives and polycyclic aromatic hydrocarbons (PAHs), which are widely used in agricultural activities for increased crop production and other human benefits, can enter the soil and water environments and cause significant toxic impacts on the soil health, microorganisms, ecosystem, human health and environmental quality. The application of biochar to soil can improve soil health and fertility, soil organic matter, nutrient content, pH and soil water retention and aggregation, but reduce soil greenhouse gas emissions, soil bulk density, erosion potential and leaching of pesticides and nutrients to surface and groundwater and mitigate climate change impacts. The biochar has high potential to remediate the soils contaminated by xenobiotic compounds reducing their mobility and bioavailability in soil. This book chapter has reviewed (1) biochar production properties and their effects on soil fertility, physical, chemical and biological properties; (2) the fate and behaviour of xenobiotics in soil, illustrating their interaction with soil constituents and uptake by plants; and (3) the remediation techniques to reduce mobility and bioavailability of the xenobiotic compounds through biochar application to soil. Depending on the type, amount of biochar applied and the physicochemical properties of the biochar itself, it may change the soil properties as well as impact the use, rates, efficacious properties and fates of xenobiotic compounds used in agronomic management. The effects of biochar on the fate and mobility of xenobiotic compounds in soil ecosystems depend on the soil types and properties. Since biochars contain colloidal-sized particles that move through soil pore water flows, colloid-facilitated transport could actually enhance mobility and leaching of xenobiotic compounds in the presence of biochar. Increased sorption to soils and recalcitrance of pesticides leading to longer residence times in the environment is desirable if bioactivity is still acceptable, and it controls the target pest. However, longer residence time may also create some environmental problems, such as greater leaching potential or carry-over problems into the following season.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abiven S, Hengartner P, Schneider MPW, Singh N, Schmidt MWI (2011) Pyrogenic carbon soluble fraction is larger and more aromatic in aged charcoal than in fresh charcoal. Soil Biol Biochem 43:1615–1617

    Article  CAS  Google Scholar 

  • Accardi-Dey A, Gschwend PM (2003) Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environ Sci Technol 37:99–106

    Article  CAS  PubMed  Google Scholar 

  • Ahmed G, Anawar HM, Takuwa DT, Chibua IT, Singh GS, Sichilongo K (2015) Environmental assessment of fate, transport and persistent behavior of dichlorodiphenyltrichloroethanes and hexachloroethanes in land and water ecosystems. Int J Environ Sci Technol 12:2741–2756

    Article  CAS  Google Scholar 

  • Akhtar MS, Steenhuis TS, Richards BK, McBride MB (2003) Chloride and lithium transport in large arrays of undisturbed silt loam and sandy loam soil columns. Vadose Zone J 2:715–727

    Article  CAS  Google Scholar 

  • Anawar HM, Akter F, Solaiman ZM, Strezov V (2015) Biochar is an emerging panacea for remediation of soil contaminants from mining, industry and sewage waste. Pedosphere 25:654–665

    Article  Google Scholar 

  • Armstrong DE, Chesters G, Harris RF (1967) Atrazine hydrolysis in soil. Soil Sci Soc Am J 31:61–66

    Article  CAS  Google Scholar 

  • Ashman MR, Puri G (2002) Essential soil science: a clear and concise introduction to soil science. Blackwell Science, Oxford

    Google Scholar 

  • Bai SH, Xu CY, Xu ZH, Blumfield TJ, Zhao HT, Wallace H, Reverchon F, Van Zwieten L (2015) Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard. Environ Sci Pollut Res 22:3803–3809

    Article  CAS  Google Scholar 

  • Barbash JE, Thelin GP, Kolpin DW, Gilliom RJ (2001) Major herbicides in groundwater: results from the national water-quality assessment. J Environ Qual 30:831–845

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effect of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Blackwell P, Storer P, Anawar HM, Joseph S, Gilkes RJ, Solaiman ZM (2015) Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere 25:686–695

    Article  Google Scholar 

  • Bridgewater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  Google Scholar 

  • Burgess RM, Perron MM, Friedman CL, Suuberg EM, Pennel KG, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Ryba SA (2009) Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment. Environ Toxicol Chem 28(1):26–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushnaf KM, Puricelli S, Saponaro S, Werner D (2011) Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. J Contam Hydrol 126:208–215

    Article  CAS  PubMed  Google Scholar 

  • Butnan S, Deenik JL, Toomsan B, Antal MJ, Vityakon P (2015) Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237:105–116

    Article  CAS  Google Scholar 

  • Cabrera A, Cox L, Spokas KA, Celis R, Hermosin MC, Cornejo J et al (2011) Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents. J Agric Food Chem 59:12550–12560

    Article  CAS  PubMed  Google Scholar 

  • Cabrera A, Cox L, Spokas K, Hermosin MC, Cornejo J, Koskinen WC (2014) Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Sci Total Environ 470–471:438–443

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Yuan M (2011) Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sed 11:62–71

    Article  CAS  Google Scholar 

  • Chidumayo EN (1994) Effects of wood carbonization on soil and initial development of seedlings in miombo woodland, Zambia. Forest Ecol Manage 70:353–357

    Article  Google Scholar 

  • Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38(17):4649–4655

    Article  CAS  PubMed  Google Scholar 

  • Clay SA, Malo DD (2012) The influence of biochar production on herbicide sorption characteristics. In: Hasaneen MN (ed) Herbicides—properties, synthesis and control of weeds. InTech, Rijeka

    Google Scholar 

  • Cornelissen G, Gustafsson O (2004) Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environ Sci Technol 38:148–155

    Article  CAS  PubMed  Google Scholar 

  • Couling NR, Towell MG, Semple KT (2010) Reprinted from biodegradation of PAHs in soil: influence of chemical structure, concentration and multiple amendment. Environ Pollut 158:3411–3420

    Article  CAS  PubMed  Google Scholar 

  • Cox D, Bezdicek D, Fauci M (2001) Effects of compost, coal ash, and straw amendments on restoring the quality of eroded Palouse soil. Biol Fert Soils 33:365–372

    Article  CAS  Google Scholar 

  • Delwiche KB, Lehmann J, Walter MT (2014) Atrazine leaching from biochar-amended soils. Chemosphere 95:346–352

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrol 72:243–248

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) (2006) Conclusion regarding the peer review of the pesticide risk assessment of the active substance: pyrimethanil. Summ EFSA Sci Rep 61:1–5

    Google Scholar 

  • Eibisch N, Schroll R, Fuss R, Mikutta R, Helfrich M, Flessa H (2015) Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural soil. Chemosphere 119:155–162

    Article  CAS  PubMed  Google Scholar 

  • Elmer WH, Lattao CV, Pignatello JJ (2015) Active removal of biochar by earthworms (Lumbricus terrestris). Pedobiologia 58(1):1–6

    Article  Google Scholar 

  • Evangelou MWH, Brem A, Ugolini F, Abiven S, Schulin R (2014) Soil application of biochar produced from biomass grown on trace element contaminated land. J Environ Manage 146:100–106

    Article  CAS  PubMed  Google Scholar 

  • Farrell M, Macdonald LM, Baldock JA (2015) Biochar differentially affects the cycling and partitioning of low molecular weight carbon in contrasting soils. Soil Biol Biochem 80:79–88

    Article  CAS  Google Scholar 

  • Gamiz B, Pignatello JJ, Hermosín MC, Cox L, Celis R (2015) Influence of biochar on the enantioselective behavior of the chiral fungicide metalaxyl in soil. vol 17. Geophysical Research Abstracts, EGU2015-15367, 2015, EGU General Assembly 2015

    Google Scholar 

  • Ghaffar A, Younis MN (2014) Adsorption of organic chemicals on graphene coated biochars and its environmental implications. Green Proces Synth 3(6):479–487

    CAS  Google Scholar 

  • Gianfreda L, Rao MA (2008) Interactions between xenobiotics and microbial and enzymatic soil activity. Critical Rev Environ Sci Technol 38(4):269–310

    Article  CAS  Google Scholar 

  • Gilliom RJ, Barbash JE, Crawford CG, Hamilton PA, Martin JD, Nakagaki N, Nowell LH, Scott JC, Stackelberg PE, Thelin GP, Wolock DM (2006) The quality of our nation’s waters—pesticides in the nation’s streams and ground water, 1992–2001: US Geological Survey Circular 1291, 172 p

    Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoals: a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Gourlay C, Tusseau-Vuillemin MH, Mouchel JM, Garric J (2005) The ability of dissolved organic matter (DOM) to influence benzo[a]pyrene bioavailability increases with DOM biodegradation. Ecotoxicol Environ Saf 61:74–82

    Article  CAS  PubMed  Google Scholar 

  • Guerena DT, Lehmann J, Thies JE, Enders A, Karanja N, Neufeldt H (2015) Partitioning the contributions of biochar properties to enhanced biological nitrogen fixation in common bean (Phaseolus vulgaris). Biol Fertil Soils 51:479–491

    Article  CAS  Google Scholar 

  • Häggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev 9:29–71

    Article  PubMed  Google Scholar 

  • Han MJ, Choi HT, Song HG (2004) Degradation of phenanthrene by trametes versicolor and its laccase. J Microbiol 42:94–98

    CAS  PubMed  Google Scholar 

  • Heitkotter J, Marschner B (2015) Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production. Geoderma 245:56–64

    Article  CAS  Google Scholar 

  • Interreg IVB Project Biochar: Climate Saving Soils (2014) The effect of freshly added and aged biochar on pesticide degradation and adsorption in soil and the effect of long-term exposure to biochar on selected key taxonomic and functional community composition of soil microbial communities. www.biochar-interreg4b.eu. Accessed Feb 2014

  • Inyang M, Gao B, Zimmerman A, Zhang M, Chen H (2014) Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites. Chem Eng J 236:39–46

    Article  CAS  Google Scholar 

  • Ippolito JA, Laird DA, Busscher WJ (2012) Environmental benefits of biochar. J Environ Qual 41:967–972

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Edward-Jones G, Murphy DV (2011) Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biol Biochem 43:804–813

    Article  CAS  Google Scholar 

  • Joseph S, Anawar HM, Storer P, Blackwell P, Chia C, Lin Y, Munroe P, Donne S, Horvat J, Wang J, Solaiman ZM (2015a) Effect of enriched biochars containing nanophase magnetic iron particles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere 25:749–760

    Article  Google Scholar 

  • Joseph S, Pow D, Dawson K, Mitchell DRG, Rawal A, Hook J, Sarasadat Taherymoosavi S, Zwieten LV, Rust J, Donne S, Munroe P, Pace B, Graber E, Thomas T, Nielsen S, Ye J, Lin Y, Pan GX, Liquang L, Solaiman ZM (2015b) Feeding biochar to cows: an innovative solution for improving soil fertility and farm productivity. Pedosphere 25:666–679

    Article  Google Scholar 

  • Kammann CI, Schmidt HP, Messerschmidt N, Linsel S, Steffens D, Muller C, Koyro HW, Conte P, Stephen J (2015) Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Rep 5:11080

    Article  PubMed  PubMed Central  Google Scholar 

  • Katyal S, Thambimuthu K, Valix M (2003) Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renew Energy 28:713–725

    Article  CAS  Google Scholar 

  • Kishimoto S, Sugiura G (1985) Charcoal as a soil conditioner. In: Symposium on forest products research, International achievements for the future, 5 (April 1985), Republic of South Africa, pp 12–23

    Google Scholar 

  • Kohler HR, Triebskorn R (2013) Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond? Science 16:759–765

    Article  CAS  Google Scholar 

  • Kookana RS (2010) The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Soil Res 48(7):627–637

    Article  CAS  Google Scholar 

  • Kookana RS, Baskaran S, Naidu R (1998) Pesticide fate and behavior in Australian soils in relation to contamination and management of soil and water: a review. Aust J Soil Res 36:715–764

    Article  CAS  Google Scholar 

  • Kookana RS, Sarmah AK, Van Zwieten L, Krull E, Singh B (2011) Biochar application to soil: agronomic and environmental benefits and unintended consequences. Adv Agron 112:103–143

    Article  CAS  Google Scholar 

  • Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Article  Google Scholar 

  • Lee PH, Doik KJ, Semple KT (2003) The development of phenanthrene catabolism in soil amended with transformer oil. FEMS Microbiol Lett 228:217–223

    Article  CAS  PubMed  Google Scholar 

  • Lehmann CJ, Rondon M (2006) Bio-char soil management on highly-weathered soils in the tropics. In: Uphoff NT (ed) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530

    Chapter  Google Scholar 

  • Lehmann CJ, da Silva Jr JP, Rondon M, da Silva CM, Greenwood J, Nehls T, Stein C, Glaser B (2002) Slash-and-char – a feasible alternative for soil fertility management in the central Amazon? In: Proceedings 17th World Congress Soil Science, Bangkok, August

    Google Scholar 

  • Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in the soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 183–205

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota: a review. Soil Biol Biogeochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B et al (2006) Black carbon increases cation exchange capacity in soil. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Lohmann R, MacFarlane JK, Gschwend PM (2005) Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments. Environ Sci Technol 39:141–148

    Article  CAS  PubMed  Google Scholar 

  • Lü J, Li J, Li Y, Chan B, Bao Z (2012) Use of rice straw biochar simultaneously as the sustained release carrier of herbicides and soil amendment for their reduced leaching. J Agric Food Chem 60:6463–6470

    Article  PubMed  CAS  Google Scholar 

  • Magan N, Fragoeiro S, Bastos C (2010) Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology 38(4):238–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandal S, Verma BC, Ramkrushna GI, Singh RK, Rajkhowa DJ (2015) Characterization of biochar obtained from weeds and its effect on soil properties of North Eastern Region of India. J Environ Biol 36:499–505

    CAS  PubMed  Google Scholar 

  • Marks EAN, Mattana S, Alcaniz JM, Domene X (2014) Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Europ J Soil Biol 60:104–111

    Article  CAS  Google Scholar 

  • Martin SM, Kookana RS, Van Zwieten L, Krull E (2012) Marked changes in herbicide sorption desorption upon ageing of biochars in soil. J Hazard Mater 231–232:70–78

    Article  PubMed  CAS  Google Scholar 

  • Masud MM, Li JY, Xu RK (2014) Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic ultisol. Pedosphere 24(6):791–798

    Article  Google Scholar 

  • Mbagwu JSC, Piccolo A (1997) Effects of humic substances from oxidized coal on soil chemical properties and maize yield. In: Drozd J, Gonet SS, Senesi N, Weber J (eds) The role of humic substances in the ecosystems and in environmental protection. IHSS, Polish Society of Humic Substances, Wroclaw, pp 921–925

    Google Scholar 

  • Novak JM, Sigua GC, Spokas KA, Busscher WJ, Cantrell KB, Watts DW, Glaz B, Hunt PG (2015) Plant macro- and micronutrient dynamics in a biochar-amended wetland muck. Water Air Soil Pollut 226:2228

    Article  CAS  Google Scholar 

  • Ogbonnaya U, Semple KT (2013) Impact of biochar on organic contaminants in soil: a tool for mitigating risk? Agronomy 3:349–375

    Article  CAS  Google Scholar 

  • Ogbonnaya U, Oyelami A, Matthews J, Adebisi O, Semple KT (2014) Influence of wood bochar on phenanthrene catabolism in soils. Environments 1:60–74

    Article  Google Scholar 

  • Oguntunde PG, Fosu M, Ajayi AE, van de Giesen N (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fertil Soils 39:295–299

    Article  CAS  Google Scholar 

  • Okimori Y, Ogawa M, Takahashi F (2003) Potential of CO2 emission reductions by carbonizing biomass waste from industrial tree plantation in Sumatra, Indonesia. Mitig Adapt Strat Glob Change 8(3):261–280

    Article  Google Scholar 

  • Paz-Ferreiro J, Liang C, Fu S, Mendez A, Gasco G (2015) The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils. PLoS One 10(4):e0124891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perucci P, Dumontet S, Bufo SA, Mazzatura A, Casucci C (2000) Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol Fertil Soils 32:17–23

    Article  CAS  Google Scholar 

  • Piccolo A, Pietramellara G, Mbagwu JSC (1996) Effects of coal derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use Manage 12:209–213

    Article  Google Scholar 

  • Purakayastha TJ, Kumari S, Pathak H (2015) Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma 239:293–303

    Article  CAS  Google Scholar 

  • Rhodes AH, McAllister LE, Chen R, Semple KT (2010) Impact of activated charcoal on the mineralisation of 14C-phenanthrene in soils. Chemosphere 79:463–469

    Article  CAS  PubMed  Google Scholar 

  • Sanchez ME, Lindao E, Margaleff D, Martinez O, Moran A (2009) Pyrolysis of agricultural residues from rape and sunflower: production and characterization of biofuels and biochar soil management. J Anal Appl Pyrol 85:142–144

    Article  CAS  Google Scholar 

  • Semple KT, Doick KJ, Wick LY, Harms H (2007) Microbial interactions with organic contaminants in soil: definitions, processes and measurements. Environ Pollut 150:166–176

    Article  CAS  PubMed  Google Scholar 

  • Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in U.S. agricultural soils. Soil Sci Soc Am J 66:1249–1255

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. In: Sparks DL (ed) Advances in agronomy. Elsevier Academic, San Diego, pp 47–82

    Google Scholar 

  • Solaiman ZM, Blackwell P, Abbott LK, Storer P (2010) Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Aust J Soil Res 48:546–554

    Article  CAS  Google Scholar 

  • Sopeña F, Semple K, Sohi S, Bending G (2012) Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 88:77–83

    Article  PubMed  CAS  Google Scholar 

  • Spokas K, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of wood biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77:574–581

    Article  CAS  PubMed  Google Scholar 

  • Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP et al (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Zheng T, Wang X (2002) PAHs contamination and PAH-degrading bacteria in Xiamen Western Sea. Chem Speciat Bioavailab 14:25–33

    Article  Google Scholar 

  • Tomlin CDS (2000) The pesticide manual, 12th edn. British Crop Protection Council, Alton, p. 1250

    Google Scholar 

  • Tryon EH (1948) Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol Monogr 18:81–115

    Article  CAS  Google Scholar 

  • Uchimiya M, Wartelle LH, Boddu VM (2012) Sorption of triazine and organophosphorus pesticides on soil and biochar. J Agric Food Chem 60(12):2989–2997

    Article  CAS  PubMed  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J et al (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  CAS  Google Scholar 

  • Vanni A, Fontana F, Cignetti A, Gennari M (2003) Behavior of pyrimethanil in soil: abiotic and biotic processes. In: Proceedings of the XII Symposium Pesticide Chemistry, Piacenza, pp 233–238

    Google Scholar 

  • Vaughn SF, Kenar JA, Eller FJ, Moser BR, Jackson MA, Peterson SC (2015) Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Ind Crop Prod 66:44–51

    Article  CAS  Google Scholar 

  • Verdisson S, Couderchet M, Vernet G (2001) Effect of procymidone, fludioxonil and pyrimethanil on two non-target aquatic plants. Chemosphere 44(3):467–474

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Lin K, Hou Z, Richardson B, Gan J (2010) Sorption of the herbicide terbuthylazine in two New Zealand forest soils amended with biosolids and biochars. J Soil Sediment 10:283–289

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1(56):1–9

    Article  PubMed Central  CAS  Google Scholar 

  • Wu MX, Feng QB, Sun X, Wang HL, Gielen G, Wu WX (2015) Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. Sci Rep 5

    Google Scholar 

  • Xu T, Lou L, Luo L, Cao R, Duan D, Chen Y (2012) Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. Sci Total Environ 414:727–731

    Article  CAS  PubMed  Google Scholar 

  • Yadav JS, Loper JC (2000) Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white rot fungus Phanerochaete chrysosporium. Curr Genet 37:65–73

    Article  CAS  PubMed  Google Scholar 

  • Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energ Conver Manage 45(5):651–671

    Article  CAS  Google Scholar 

  • Yang YN, Sheng GY (2003a) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environ Sci Technol 37(16):3635–3639

    Article  CAS  PubMed  Google Scholar 

  • Yang YN, Sheng GY (2003b) Pesticide adsorptivity of aged particulate matter arising from crop residue burns. J Agric Food Chem 51(17):5047–5051

    Article  CAS  PubMed  Google Scholar 

  • Yang XB, Ying GG, Peng PA, Wang L, Zhao JL, Zhang LJ, Yuan P, He HP (2010) Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem 58(13):7915–7921

    Article  CAS  PubMed  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2006) Sorption and desorption behaviours of diuron in soils amended with charcoal. J Agric Food Chem 54:8545–8550

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Ying G, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–671

    Article  CAS  PubMed  Google Scholar 

  • Yu XY, Pan LG, Ying GG, Kookana RS (2010) Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. J Environ Sci 22:615–620

    Article  CAS  Google Scholar 

  • Zhang W, Niu J, Morales VL, Chen X, Hay AG, Lehmann J et al (2010) Transport and retention of biochar particles in porous media: effect of pH, ionic strength, and particle size. Ecohydrology 3:497–508

    Article  CAS  Google Scholar 

  • Zhao RD, Coles N, Kong Z, Wu JP (2015) Effects of aged and fresh biochars on soil acidity under different incubation conditions. Soil Tillage Res 146:133–138

    Article  Google Scholar 

  • Zheng W, Guo M, Chow T, Bennett DN, Rajagopalan N (2010) Sorption properties of greenwaste biochar for two triazine pesticides. J Hazard Mater 181:121–126

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Peng XH, Huang TQ (2015) Contrasted effects of biochar on maize growth and N use efficiency depending on soil conditions. Int Agrophys 29(20):257–266

    CAS  Google Scholar 

  • Zong YT, Chen DP, Lu SG (2014) Impact of biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil. J Plant Nutr Soil Sci 177(6):920–926

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Strezov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anawar, H.M., Strezov, V., Akter, F., Kader, M.A., Solaiman, Z.M. (2017). Impact of Biochar on Soil Fertility and Behaviour of Xenobiotics in Soil. In: Hashmi, M., Kumar, V., Varma, A. (eds) Xenobiotics in the Soil Environment. Soil Biology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-47744-2_20

Download citation

Publish with us

Policies and ethics