Skip to main content

Related Works on Cooperative Wireless Networks

  • Chapter
  • First Online:
Protocol Design and Analysis for Cooperative Wireless Networks

Part of the book series: Wireless Networks ((WN))

  • 428 Accesses

Abstract

In this chapter, we introduce the background information and the related works on cooperative wireless networks. Cooperative communications at the physical layer enable single-antenna devices to reap the benefits of MIMO systems by sharing their antennas with each other to create a virtual MIMO system. Through cooperation at the physical layer, the channel reliability can be improved via spatial diversity. However, when multiple relay nodes are available, they access the wireless medium at the same time, which leads to packet corruption. Besides, wireless networks may also suffer from some other problems, such as time varying channel, mobility and limited power of the hosts, and hidden terminal problem caused by location-dependent carrier sensing. In order to overcome these problems and achieve good performance in wireless networks, the MAC layer should properly schedule the cooperative entities to achieve the cooperation gain. A cooperative MAC protocol may focus on either a non-diversity scenario or a diversity scenario. For the contention-based solutions, we classify the well-known proposals according to how they address two fundamental questions for user cooperation, i.e., when to cooperate and whom to cooperate with. According to how the entities (the source or the helper nodes) handle the above two questions, we classify the mainstream cooperative MAC protocols into three categories. In addition, we point out several challenging issues on MAC-layer cooperation that needs to be addressed properly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, R.: Performance analysis of relay based cooperative MAC protocols. Ph.D. thesis, Victoria University (2010)

    Google Scholar 

  2. Ahmad, R., Zheng, F., Drieberg, M., Olafsson, S.: An enhanced relay-enabled medium access control protocol for wireless ad hoc networks. In: Proceedings of IEEE VTC Spring, Melbourne (2006)

    Google Scholar 

  3. Akhbari, B., Mirmohseni, M., Aref, M.R.: Compress-and-forward strategy for the relay channel with non-causal state information. In: Proceedings of IEEE International Symposium on Information Theory, Seoul, pp. 1169–1173 (2009)

    Google Scholar 

  4. Anghel, P.A., Kaveh, M.: Exact symbol error probability of a cooperative network in a Rayleigh-fading environment. IEEE Trans. Wirel. Commun. 3 (5), 1416–1421 (2004)

    Article  Google Scholar 

  5. Azgin, A., Altunbasak, Y., AlRegib, G.: Cooperative MAC and routing protocols for wireless ad hoc networks. In: Proceedings of IEEE GLOBECOM, St. Louis, Missouri (2005)

    Book  Google Scholar 

  6. Bai, F., Helmy, A.: A survey of mobility models in wireless adhoc networks. In: Safwat, A. (ed.) Wireless Ad Hoc and Sensor Networks, pp. 1–30. Springer (2006). ISBN: 978-0-387-25483-8

    Google Scholar 

  7. Beaulieu, N.C., Hu, J.: A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar Rayleigh fading channels. IEEE Commun. Lett. 10 (12), 813–815 (2006)

    Article  Google Scholar 

  8. Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. 24 (3), 659–672 (2006)

    Article  Google Scholar 

  9. Bletsas, A., Lippnian, A., Reed, D.P.: A simple distributed method for relay selection in cooperative diversity wireless networks, based on reciprocity and channel measurements. In: Proceedings of IEEE VTC Spring, vol. 3, Stockholm, pp. 1484–1488 (2005)

    Google Scholar 

  10. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wirel. Commun. Mob. Comput. 2 (5), 483–502 (2002)

    Article  Google Scholar 

  11. Chiang, C.C.: Wireless network multicasting. Ph.D. thesis, University of California (1998)

    Google Scholar 

  12. Chiang, Y., Chen, K.: Optimal cooperative ALOHA multiple access in fading channels. IEEE Commun. Lett. 14 (8), 779–781 (2010)

    Article  Google Scholar 

  13. Cover, T., Gamal, A.E.: Capacity theorems for the relay channel. IEEE Trans. Inf. Theory 25 (5), 572–584 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dohler, M.: Virtual antenna arrays. Ph.D. thesis, University of London (2003)

    Google Scholar 

  15. Du, Q., Zhang, X.: QoS-aware base-station selections for distributed MIMO links in broadband wireless networks. IEEE J. Sel. Areas Commun. 29 (6), 1123–1138 (2011)

    Article  Google Scholar 

  16. Feeney, L.M., Cetin, B., Hollos, D., Kubisch, M., Mengesha, S., Karl, H.: Multi-rate relaying for performance improvement in IEEE 802.11 WLANs. In: Proceedings of 5th International Conference on Wired/Wireless Internet Communications, Coimbra (2007)

    Google Scholar 

  17. Gokturk, M.S., Ercetin, O., Gurbuz, O.: Throughput analysis of ALOHA with cooperative diversity. IEEE Commun. Lett. 12 (6), 468–470 (2008)

    Article  Google Scholar 

  18. Hong, Y.W., Lin, C.K., Wang, S.H.: On the stability region of two-user slotted ALOHA with cooperative relays. In: Proceedings of IEEE International Symposium on Information Theory, San Diego, pp. 356–360 (2007)

    Google Scholar 

  19. Hu, R., Li, J.: Practical compress-and-forward in user cooperation: Wyner-Ziv cooperation. In: Proceedings of IEEE International Symposium on Information Theory, Chengdu. pp. 489–493 (2006)

    Google Scholar 

  20. Hunter, T., Nosratinia, A.: Cooperative diversity through coding. In: Proceedings of IEEE International Symposium on Information Theory, Lausanne, p. 220 (2002)

    Google Scholar 

  21. Hunter, T.E., Nosratinia, A.: Coded cooperation under slow fading, fast fading, and power control. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, vol. 1, Pacific Grove, pp. 118–122 (2002)

    Google Scholar 

  22. Hunter, T.E., Nosratinia, A.: Diversity through coded cooperation. IEEE Trans. Wirel. Commun. 5 (2), 283–289 (2006)

    Article  MathSciNet  Google Scholar 

  23. Hunter, T.E., Sanayei, S., Nosratinia, A.: Outage analysis of coded cooperation. IEEE Trans. Inform. Theory 52 (2), 375–391 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ibrahim, A.S., Sadek, A.K., Su, W., Liu, K.J.R.: Cooperative communications with relay-selection: when to cooperate and whom to cooperate with? IEEE Trans. Wirel. Commun. 7 (7), 2814–2827 (2008)

    Article  Google Scholar 

  25. Issariyakul, T., Krishnamurthy, V.: Amplify-and-forward cooperative diversity wireless networks: model, analysis, and monotonicity properties. IEEE/ACM Trans. Netw. 17 (1), 225–238 (2009)

    Article  Google Scholar 

  26. Janani, M., Hedayat, A., Hunter, T.E., Nosratinia, A.: Coded cooperation in wireless communications: space-time transmission and iterative decoding. IEEE Trans. Signal Process. 52 (2), 362–371 (2004)

    Article  MathSciNet  Google Scholar 

  27. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wireless networks. Mobile Comput. pp. 153–181 (1996)

    Google Scholar 

  28. Ju, P., Song, W., Zhou, D.: An enhanced cooperative MAC protocol based on perceptron training. In: Proceedings of IEEE WCNC, Shanghai (2013)

    Book  Google Scholar 

  29. Ju, P., Song, W., Zhou, D.: Survey on cooperative medium access control protocols. IET Commun. 7 (9), 893–902 (2013)

    Article  Google Scholar 

  30. Khojastepour, M., Sabharwal, A., Aazhang, B.: Lower bounds on the capacity of Gaussian relay channel. In: Proceedings of annual conference on information sciences and systems, Big Island, pp. 597–602 (2004)

    Google Scholar 

  31. Kim, T., Skoglund, M., Caire, G.: Quantifying the loss of compress-forward relaying without Wyner-Ziv coding. IEEE Trans. Inform. Theory 55 (4), 1529–1533 (2009)

    Article  MathSciNet  Google Scholar 

  32. Kramer, G., Gastpar, M., Gupta, P.: Cooperative strategies and capacity theorems for relay networks. IEEE Trans. Inform. Theory 51 (9), 3037–3063 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Laneman, J.N.: Cooperative diversity in wireless networks: algorithms and architectures. Ph.D. thesis, Massachusetts Institute of Technology (2002)

    Google Scholar 

  34. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50 (12), 3062–3080 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Laneman, J.N., Wornell, G.W.: Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans. Inform. Theory 49 (10), 2415–2425 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, Y., Wang, P., Niyato, D., Zhuang, W.: A dynamic relay selection scheme for mobile users in wireless relay networks. In: Proceedings of IEEE INFOCOM Workshop, Shanghai (2011)

    Book  Google Scholar 

  37. Liang, B., Haas, Z.J.: Predictive distance-based mobility management for PCS networks. In: Proceedings of IEEE INFOCOM, vol. 3, pp. 1377–1384 (1999)

    Google Scholar 

  38. Liu, P., Tao, Z., Narayanan, S., Korakis, T., Panwar, S.S.: CoopMAC: a cooperative MAC for wireless LANs. IEEE J. Sel. Areas Commun. 25 (2), 340–354 (2007)

    Article  Google Scholar 

  39. Liu, P., Tao, Z., Panwar, S.: A cooperative MAC protocol for wireless local area networks. In: Proceedings of IEEE ICC, vol. 5, St Louis, pp. 2962–2968 (2005)

    Google Scholar 

  40. Luo, J., Blum, R.S., Cimini, L.J., Greenstein, L.J., Haimovich, A.M.: Decode-and-forward cooperative diversity with power allocation in wireless networks. IEEE Trans. Wirel. Commun. 6 (3), 793–799 (2007)

    Article  Google Scholar 

  41. Moon, Y., Syrotiuk, V.R.: A cooperative CDMA-based multi-channel MAC protocol for mobile ad hoc networks. Comput. Commun. 32 (17), 1810–1819 (2009)

    Article  Google Scholar 

  42. Narayanan, S., Panwar, S.S.: To forward or not to forward – that is the question. Wirel. Pers. Commun. 43 (1), 65–87 (2007)

    Article  Google Scholar 

  43. Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42 (10), 74–80 (2004)

    Article  Google Scholar 

  44. Pathmasuritharam, J.S., Das, A., Gupta, A.K.: Efficient multi-rate relaying (EMR) MAC protocol for ad hoc networks. In: Proceedings of IEEE ICC, vol. 5, St Louis, pp. 2947–2951 (2005)

    Google Scholar 

  45. Sadek, A.K., Liu, K.J.R., Ephremides, A.: Collaborative multiple-access protocols for wireless networks. In: Proceedings of IEEE ICC, vol. 10, Setbal, pp. 4495–4500 (2006)

    Google Scholar 

  46. Sangman, M., Chansu, Y., Seung-Min, P., Heung-Nam, K., Jiwon, P.: CD-MAC: cooperative diversity MAC for robust communication in wireless ad hoc networks. In: Proceedings of IEEE ICC, Glasgow, pp. 3636–3641 (2007)

    Google Scholar 

  47. Scutari, G., Barbarossa, S.: Distributed space-time coding for regenerative relay networks. IEEE Trans. Wirel. Commun. 4 (5), 2387–2399 (2005)

    Article  Google Scholar 

  48. Sediq, A.B., Yanikomeroglu, H.: Performance analysis of selection combining of signals with different modulation levels in cooperative communications. IEEE Trans. Veh. Technol. 60 (4), 1880–1887 (2011)

    Article  Google Scholar 

  49. Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity–Part I: system description. IEEE Trans. Commun. 51 (11), 1927–1938 (2003)

    Article  Google Scholar 

  50. Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity–Part II: implementation aspects and performance analysis. IEEE Trans. Commun. 51 (11), 1939–1948 (2003)

    Article  Google Scholar 

  51. Shan, H., Cheng, H., Zhuang, W.: Cross-layer cooperative MAC protocol in distributed wireless networks. IEEE Trans. Wirel. Commun. 10 (8), 2603–2615 (2011)

    Article  Google Scholar 

  52. Shan, H., Zhuang, W., Wang, Z.: Distributed cooperative MAC for multihop wireless networks. IEEE Commun. Mag. 47 (2), 126–133 (2009)

    Article  Google Scholar 

  53. Simoens, S., Muoz-Medina, O., Vidal, J., Coso, A.D.: Compress-and-forward cooperative MIMO relaying with full channel state information. IEEE Trans. Signal Process. 58 (2), 781–791 (2010)

    Article  MathSciNet  Google Scholar 

  54. Song, W., Ju, P., Zhou, D.: Performance of cooperative relaying with adaptive modulation and selection combining. In: Proceedings of International Conference on Computing, Networking and Communications (ICNC), San Diego (2013)

    Google Scholar 

  55. Suraweera, H.A., Smith, P.J., Armstrong, J.: Outage probability of cooperative relay networks in Nakagami-m fading channels. IEEE Commun. Lett. 10 (12), 834–836 (2006)

    Article  Google Scholar 

  56. Yang, Z., Yao, Y.D., Li, X., Zheng, D.: A TDMA-based MAC protocol with cooperative diversity. IEEE Commun. Lett. 14 (6), 542–544 (2010)

    Article  Google Scholar 

  57. Yi, Z., Kim, I.: Diversity order analysis of the decode-and-forward cooperative networks with relay selection. IEEE Trans. Wirel. Commun. 7 (5), 1792–1799 (2008)

    Article  MathSciNet  Google Scholar 

  58. Zhao, Y., Adve, R., Lim, T.: Improving amplify-and-forward relay networks: optimal power allocation versus selection. In: Proceedings of IEEE International Symposium on Information Theory, Seattle, pp. 1234–1238 (2006)

    Google Scholar 

  59. Zhao, Y., Adve, R., Lim, T.: Symbol error rate of selection amplify-and-forward relay systems. IEEE Commun. Lett. 10 (11), 757–759 (2006)

    Article  Google Scholar 

  60. Zhou, T., Sharif, H., Hempel, M., Mahasukhon, P., Wang, W., Ma, T.: A novel adaptive distributed cooperative relaying MAC protocol for vehicular networks. IEEE J. Sel. Areas Commun. 29 (1), 72–82 (2011)

    Article  Google Scholar 

  61. Zhu, H., Cao, G.: rDCF: A relay-enabled medium access control protocol for wireless ad hoc networks. IEEE Trans. Mobile Comput. 5 (9), 1201–1214 (2006)

    Article  MathSciNet  Google Scholar 

  62. Zhuang, W., Ismail, M.: Cooperation in wireless communication networks. IEEE Wirel. Commun. Mag. 19 (2), 10–20 (2012)

    Article  Google Scholar 

  63. Zhuang, W., Zhou, Y.: A survey of cooperative mac protocols for mobile communication networks. J. Internet Technol. 14 (4), 541–560 (2013)

    Google Scholar 

  64. Zou, S., Li, B., Wu, H., Zhang, Q., Zhu, W., Cheng, S.: A relay-aided media access (RAMA) protocol in multirate wireless networks. IEEE Trans. Veh. Technol. 55 (5), 1657–1667 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Song, W., Ju, P., Jin, AL. (2017). Related Works on Cooperative Wireless Networks. In: Protocol Design and Analysis for Cooperative Wireless Networks. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-47726-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47726-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47725-1

  • Online ISBN: 978-3-319-47726-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics