Skip to main content

Algorithms to Survive: Programming Operation in Non-Volatile Memories

  • Chapter
  • First Online:
In Search of the Next Memory

Abstract

Non-Volatile memories offer the possibility to maintain the stored digital information over years without a power supply. This requires programming mechanisms that physically modify the memory cell: this physical alteration must be “hard” in order to guarantee the non-volatility of the stored information. We could say that, in general, the harder it is to intentionally modify the cell, the better is the data retention over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The achievable resolution is in practice worse due to non-idealities in program and verify operations [5].

  2. 2.

    Another SET programming approach consists of heating the active GST up to its melting point and then cooling it down slowly to the normal operating temperature, so as to enable crystallization in an ordered structure. An implementation of this approach (staircase-down SET programming) will be discussed in Sect. 3.2.

References

  1. P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview,” Proc. IEEE, vol. 85, no.8, pp. 1248–1271, Aug. 1997.

    Google Scholar 

  2. P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni (Eds.), Flash Memories. Boston, MA, USA: Kluwer Academic Publishers, 1999.

    Google Scholar 

  3. G. W. Burr et al., “Phase change memory technology,” J. Vacuum Sci. Technol. B, vol. 28, no. 2, pp. 223–262, Mar. 2010.

    Google Scholar 

  4. H. S. P. Wong et al., “Phase change memory,” in Proc. IEEE, vol. 98, no. 12, pp. 2201–2227, Dec. 2010.

    Google Scholar 

  5. A. Modelli, A. Manstretta, and G. Torelli, “Basic feasibility constraints for multilevel CHE-programmed Flash memories”, IEEE Trans. Electron Devices, vol. 48, no. 9, pp. 2032–2042, Sept. 2001.

    Google Scholar 

  6. G. Campardo, R. Micheloni, and D. Novosel, VLSI-Design of Non-Volatile Memories. Berlin, Germany: Springer-Verlag, 2005.

    Google Scholar 

  7. A. Silvagni et al. “An overview of logic architectures inside Flash memory devices,” Proc. IEEE, vol. 91, no. 4, pp. 569–580, Apr. 2003.

    Google Scholar 

  8. R. Micheloni, L. Cripa, and A. Marelli, Inside NAND Flash Memories. Dordrecht: Springer, 2010.

    Google Scholar 

  9. G. Torelli and P. Lupi, “An improved method for programming a word-erasable EEPROM”, Alta Frequenza, vol. LII, no. 6, Nov./Dec. 1983, pp. 487–494.

    Google Scholar 

  10. V. N. Kynett et al., “A 90-ns one-million erase/program cycle 1-Mbit flash memory,” IEEE J. Solid-State Circuits, vol. 24, pp. 1259–1264, Oct. 1989.

    Google Scholar 

  11. T. Tanaka et al., “A quick intelligent page-programming architecture and a shielding bitline sensing method for 3 V-only NAND flash memory,” IEEE J. Solid-State Circuits, vol. 29, no. 11, pp. 1366–1373, Nov. 1994.

    Google Scholar 

  12. R. Shirota et al., “A new programming method and cell architecture for multi-level NAND Flash memories,” in Proc. 14th IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, CA, USA, Aug. 1995.

    Google Scholar 

  13. K. Suh et al., “A 3.3 V 32 Mb NAND flash memory with incremental step pulse programming scheme,” IEEE J. Solid-State Circuits, vol. 30, no. 11, Nov. 1995, pp 1149–1156.

    Google Scholar 

  14. M. Bauer et al., “A multilevel-cell 32 Mb Flash memory,” in 1995 IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, Feb. 1995, pp. 132–133.

    Google Scholar 

  15. T.-S. Jung et al., “A 117-mm2 3.3-V only 128-Mb multilevel NAND flash memory for mass storage applications,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1575–1583, Nov 1996.

    Google Scholar 

  16. B. Riccó et al., “Nonvolatile multilevel memories for digital applications,” Proc. IEEE, vol. 86, pp. 2399–2421, Dec. 1998.

    Google Scholar 

  17. R. Micheloni et al., “A 0.13-µm CMOS NOR Flash memory experimental chip for 4-b/cell digital storage,” in Proc. 28th European Solid-State Circuits Conf. (ESSCIRC), Florence, Italy, Sept. 2002, pp. 131–134.

    Google Scholar 

  18. N. Shibata et al., “A 70 nm 16 GB 16-level-cell NAND flash memory,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 929–937, Apr. 2008.

    Google Scholar 

  19. S. Braga, A. Cabrini, and G. Torelli, “Experimental analysis of partial-SET state stability in phase change memories,” IEEE Trans. Electron Devices, vol. 58, no. 2, pp. 517–522, Feb. 2011.

    Google Scholar 

  20. S. Braga, A. Sanasi, A. Cabrini, and G. Torelli, “Modeling of partial-RESET dynamics in Phase Change Memories,” in Proc. 40th European Solid State Device Research Conference (ESSDERC), Sevilla, Spain, Sept. 2010, pp. 456–459.

    Google Scholar 

  21. S. Braga, A. Sanasi, A. Cabrini, and G. Torelli, “Voltage-driven partial-RESET multilevel programming in phase-change memories,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2556–2563, Oct. 2010.

    Google Scholar 

  22. A. Pirovano et al., “Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials,” in IEEE Trans. Electron Devices, vol. 51, no. 5, pp. 714–719, May 2004.

    Google Scholar 

  23. M. Boniardi et al., “A physics-based model of electrical conduction decrease with time in amorphous Ge2Sb2Te5,” J. Appl. Phys., vol. 105, no. 8, pp. 084506-1–084506-5, Apr. 2009.

    Google Scholar 

  24. N. Papandreou et al., “Drift-tolerant multilevel phase-change memory,” in Proc. 2011 3rd IEEE Int. Memory Workshop (IMW), Monterey, CA, USA, May 2011, pp. 1–4.

    Google Scholar 

  25. S. Senkader and C. D. Wright, “Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices,” J. Appl. Phys., vol. 95, no. 2, pp. 504–511, Jan. 2004.

    Google Scholar 

  26. U. Russo, D. Ielmini, A. Redaelli, and A. L. Lacaita, “Intrinsic data retention in nanoscaled phase-change memories—Part I: Monte Carlo model for crystallization and perolation,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 3032–3039, Dec. 2006.

    Google Scholar 

  27. F. Bedeschi, C. Boffino, E. Bonizzoni, C. Resta, and G. Torelli, “Staircase-down SET programming approach for phase-change memories”, Microelectronics Journal, vol. 38, no. 10-11, Oct.-Nov. 2007, pp. 1064–1069.

    Google Scholar 

  28. T. Nirschl et al., “Write strategies for 2 and 4-bit multi-level phase-change memory,” 2007 IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., Washington, DC, USA, Dec. 2007, pp. 461–464.

    Google Scholar 

  29. F. Bedeschi et al., “A bipolar-selected phase-change memory featuring multi-level cell storage,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 217–227, Jan. 2009.

    Google Scholar 

  30. N. Papandreou et al., “Programming algorithms for multilevel phase-change memory,” in Proc. 2011 IEEE Int. Symp. Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, May 2011, pp. 329–332.

    Google Scholar 

  31. S. Braga, A. Cabrini, and G. Torelli, “An integrated multi-physics approach to the modeling of a phase-change memory device,” in Proc. 38th European Solid-State Device Research Conf. (ESSDERC), Edinburgh, UK, Sept. 2008, pp. 154–157.

    Google Scholar 

  32. D. Ielmini et al., “Analysis of phase distribution in phase-change nonvolatile memories,” IEEE Electron Device Lett., vol. 25, no. 7, pp. 507–509, July 2004.

    Google Scholar 

  33. A. Cabrini, S. Braga, and G. Torelli, “Drift-driven investigation of phase distribution in Phase-Change Memories, Proc. 21st IEEE Int. Conf. Electronics, Circuits, and Systems (ICECS), Marseille, France, Dec. 2014, pp. 299–302.

    Google Scholar 

  34. N. Papandreou et al., “Estimation of amorphous fraction in multilevel phase change memory cells,” in Proc. 39th European Solid State Device Research Conference (ESSDERC), Athens, Greece, Sept. 2009, pp. 209–212.

    Google Scholar 

  35. I. V. Karpov et al., “Fundamental drift of parameters in chalcogenide phase change memory,” J. Appl. Phys., vol. 102, no. 12, 124503-1–124503-6, Dec. 2007.

    Google Scholar 

  36. S. Lavizzari, D. Ielmini, D. Sharma, and A. L. Lacaita, “Structural relaxation in chalcogenide-based phase change memories (PCMs): from defect-annihilation kinetic to device-reliability prediction,” in Proc. Eur. Phase Change Ovonics Symp. (E\PCOS), Prague, Czech Republic, 2008.

    Google Scholar 

  37. S. Braga, A. Cabrini and G. Torelli, “Dependence of resistance drift on the amorphous cap size in phase change memory arrays,” Appl. Phys. Lett., vol. 94, 092112-1–092112-1, March 2009.

    Google Scholar 

  38. N. Papandreou et al., “Drift-resilient cell-state metric for multi-level phase-change memory” in 2011 IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., Washington, DC, USA, Dec. 2011, pp. 55–58.

    Google Scholar 

  39. A. Redaelli, D. Ielmini, U. Russo, and A. L. Lacaita, “Intrinsic data retention in nanoscaled phase-change memories—Part II: Statistical analysis and prediction of failure time,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 3040–3046, Dec. 2006.

    Google Scholar 

  40. A. Cabrini, A. Fantini, F. Gallazzi, and G. Torelli, “Temperature dependence of the programmed states in GST-based multilevel phase-change memories”, Proc. 15th IEEE Int. Conf. Electronics, Circuits and Systems (ICECS), St. Julien’s, Malta, Aug.-Sept. 2008, pp. 186–189.

    Google Scholar 

  41. R. Waser, R. Dittman, G. Staikov, and K. Szot, “Redox-based resistive switching memories – nanoionics mechanism, prospects, and challenges,” Adv. Mater., vol. 21, pp. 2632–2663, 2009.

    Google Scholar 

  42. I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki “Electrochemical metallization memories – Fundamentals, applications, prospects,” Nanotechnology, vol. 22, no. 25, 254003, 2011.

    Google Scholar 

  43. H. S. P. Wong et al., “Metal-oxide RRAM,” Proc. IEEE, vol. 100, no. 6, pp. 1951–2012, Jun. 2012.

    Google Scholar 

  44. H. Y. Lee et al., “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” in 2008 IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., San Francisco, CA, USA, Dec. 2008.

    Google Scholar 

  45. Z. Wei et al., “Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism,” in 2008 IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., San Francisco, CA, USA, Dec. 2008, pp. 293–296.

    Google Scholar 

  46. D. B. Strukov, G. S. Snider, D. R. Steward, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, pp. 80–83, May 2008.

    Google Scholar 

  47. Z. Wei et al., “Demonstration of high-density ReRAM ensuring 10-year retention at 85°C based on a newly developed reliability model,” in 2011 IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., Washington, DC, USA, Dec. 2011, pp. 722–724.

    Google Scholar 

  48. T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,” J. Appl. Phys., vol. 33, no. 9, pp. 2669–2682, Sep. 1962.

    Google Scholar 

  49. J. G. Simmons and R. R. Verderber, “New thin-film resistive memory,” The Radio and Electronic Engineer., pp. 81–89, Aug. 1967.

    Google Scholar 

  50. I. G. Baek et al., “Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” in 2004 IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., San Francisco, CA, USA, Dec. 2004, pp. 587–590.

    Google Scholar 

  51. P. Delcroix, S. Blonkowski, and M. Kogelschatz, “Pre-breakdown negative differential resistance in thin oxide film: Conductive-atomic force microscopy observation and modelling,” J. Appl. Phys., vol. 110, 034104, 2001.

    Google Scholar 

  52. K. Kinoshita et al., “Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance,” App. Phys. Lett., vol. 93, 033506, Jul 2008.

    Google Scholar 

  53. A. Kawahara et al., “An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput,” in Int. Solid-State Circuits Conf. Dig. Tech. Papers, San Francisco, CA, USA, 2012, pp. 432–434.

    Google Scholar 

  54. A. Fantini et al., “Intrinsic switching behavior in HfO2 RRAM by fast electrical measurements on novel 2R test structures,” in Proc. 2012 4th IEEE Int. Memory Workshop (IMW), Milano, Italy, May 2011.

    Google Scholar 

  55. B. Govoreanu et al., “10 x 10 nm2 Hf/HfO crossbar resistive RAM with excellent performance, reliability and low-energy operation,” in 2011 IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., Washington, DC, USA, Dec. 2011, pp. 729–732.

    Google Scholar 

  56. A. Fantini et al., “Intrinsic switching variability in HfO2 RRAM,” in Proc. 2013 5th IEEE Int. Memory Workshop (IMW), Monterey, CA, USA, May 2013.

    Google Scholar 

  57. S. Ambrogio et al., “Statistical fluctuations in HfOx resistive-switching memory: Part I - set/reset variability,” IEEE Trans. Electron Devices, vol. 61, no. 8, Aug. 2014, pp. 2912–2919.

    Google Scholar 

  58. R. Degraeve et al., “Dynamic ‘hour glass’ model for SET and RESET in HfO2 RRAM,” in Proc. 2012 Symposium on VLSI Technology, Honolulu, HI, USA, Jun. 2012, pp. 75–76.

    Google Scholar 

  59. S. Larentis et al., “Bipolar-switching model of RRAM by field- and temperature-activated ion migration,” in Proc. 2012 4th IEEE Int. Memory Workshop (IMW), Milano, Italy, May 2011.

    Google Scholar 

  60. A. Fantini et al., “Intrinsic program instability HfO2 RRAM and consequences on program algorithms,” in 2015 IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., Washington, DC, USA, Dec. 2015, pp. 167–172.

    Google Scholar 

  61. A. Calderoni et al., “Engineering ReRAM for high-density applications,” Microelectronic Engineering, vol. 147, Nov. 2015, pp. 145–150.

    Google Scholar 

  62. R. Degraeve et al., “Quantitative model for post-program instabilities in Filamentary RRAM,” in Proc. 2016 IEEE Int. Reliability Physics Symposium (IRPS), Pasadena, CA, USA, Apr. 2016.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank all the people, the companies, and the institutions, too numerous to list, who have contributed to their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Cabrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cabrini, A., Fantini, A., Torelli, G. (2017). Algorithms to Survive: Programming Operation in Non-Volatile Memories. In: Gastaldi, R., Campardo, G. (eds) In Search of the Next Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-47724-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47724-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47722-0

  • Online ISBN: 978-3-319-47724-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics