Advertisement

From Design to Visualization of Spatial OLAP Applications: A First Prototyping Methodology

  • Sandro BimonteEmail author
  • Ali Hassan
  • Philippe Beaune
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9975)

Abstract

The design of Spatial OLAP (SOLAP) applications consists of (i) Spatial Data Warehouse (SDW) model design and (ii) SOLAP visualization definition because a specific set of understandable and readable cartographic visualizations corresponds to a particular type of SOLAP query. Unfortunately few works investigate geovisualization issues in SOLAP systems and propose new methodologies to visualize spatio-temporal data, and no works investigate tools for readable SOLAP cartographic displays. Moreover, some works propose ad-hoc methodologies for DWs and SDWs exclusively based on data and user analysis requirements. Therefore, we present in this paper (i) a new geovisualization methodology for SOLAP queries that yields readable maps and (ii) a new prototyping design methodology for SOLAP applications that accounts for geovisualization requirements.

Keywords

Spatial data warehouse Spatial OLAP Geovisualization 

Notes

Acknowledgement

This work is supported by the CAPTIVEN project of the ANR 11- CNRT-0003 program “investissements d’Avenir - valorisation PME”.

References

  1. 1.
    Andrienko, G., Andrienko, N.: Interactive maps for visual data exploration. Int. J. Geogr. Inf. Sci. 13(4), 355–374 (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bédard, Y., Han, J.: Fundamentals of spatial data warehousing for geographic knowledge discovery. In: Geographic Data Mining and Knowledge Discovery (2001)Google Scholar
  3. 3.
    Bédard, Y., Proulx, M., Rivest, S., Badard, T.: Merging hypermedia gis with spatial on-line analytical processing: towards hypermedia SOLAP. In: Stefanakis, E. (ed.) Geographic Hypermedia, pp. 167–187. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bertin, J.: The Semiology of Graphics. University of Wisconsin Press, New York (1983)Google Scholar
  5. 5.
    Bimonte, S.: A generic geovisualization model for spatial OLAP and its implementation in a standards-based architecture. ISI 19(5), 97–118 (2014)CrossRefGoogle Scholar
  6. 6.
    Bimonte, S., Edoh-Alove, E., Nazih, H., Kang, M., Rizzi, S.: ProtOLAP: rapid OLAP prototyping with on-demand data supply. DOLAP 2013, 61–66 (2013)Google Scholar
  7. 7.
    Boulil, K., Bimonte, S., Pinet, F.: Conceptual model for spatial data cubes: A UML profile and its automatic implementation. Comput. Stand. Interfaces 38, 113–132 (2015)CrossRefGoogle Scholar
  8. 8.
    Corr, L., Stagnitto, J.: Agile Data Warehouse Design: Collaborative Dimensional Modeling, from Whiteboard to Star Schema. DecisionOne Press, Leeds (2011). ISBN: 9780956817204Google Scholar
  9. 9.
    Ezzedine, S., Turki, Y., Faïz, S.: An approach based on the clustering of spatial requirements’ models and MDA to design spatial data warehouses. IJDMMM 7(4), 276–292 (2015)CrossRefGoogle Scholar
  10. 10.
    Golfarelli, M., Mantovani, M., Ravaldi, F., Rizzi, S.: Lily: a geo-enhanced library for location intelligence. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 72–83. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40131-2_7 CrossRefGoogle Scholar
  11. 11.
    Harrower, M., Fabrikant, S.: The role of map animation in geographic visualization. Geographic Visualization: Concepts, Tools and Applications, 49–65 (2008)Google Scholar
  12. 12.
    Johany, F., Bimonte, S.: A framework for spatio-multidimensional analysis improved by chorems: application to agricultural data. In: Helfert, M., et al. (eds.) DATA 2015. CCIS, vol. 584, pp. 59–80. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-30162-4_5 CrossRefGoogle Scholar
  13. 13.
    Leonardi, L., Orlando, S., Raffaetà, A., Roncato, A., Silvestri, C., Andrienko, G., Andrienko, N.: A general framework for trajectory data warehousing and visual OLAP. GeoInformatica 18(2), 273–312 (2014)CrossRefGoogle Scholar
  14. 14.
    MacEachren, A., Gahegan, M., Pike, W.: Geovisualization for knowledge construction and decision support. IEEE Comput. Graph. Appl. 24(1), 13–17 (2004)CrossRefGoogle Scholar
  15. 15.
    Malinowski, E.: GeoBI Architecture Based on Free Software. Geographical Information Systems Trends and Technologies. Elaheh Pourabbas CRC Press, New York (2014)CrossRefGoogle Scholar
  16. 16.
    Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design From Conventional to Spatial and Temporal Applications. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  17. 17.
    Palpanas, T., Chowdhary, P., Mihaila, G., Pinel, F.: Integrated model-driven dashboard development. Inf. Syst. Front. 9(2–3), 195–208 (2007)CrossRefGoogle Scholar
  18. 18.
    Silva, R., Moura-Pires, J., Santos, M.: Spatial clustering in SOLAP systems to enhance map visualization. IJDWM 8(2), 23–43 (2012)Google Scholar
  19. 19.
    Southall, H.: Visualization, data sharing and metadata, in geographic visualization: concepts, tools and applications. In: Dodge, M., McDerby, M., Turner, M. (eds.) (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.TSCF, IrsteaAubiereFrance
  2. 2.AgaetisClermont-FerrandFrance

Personalised recommendations