Advertisement

Surgical Alignment Goals for Adult Lumbar Scoliosis

  • Pouya Alijanipour
  • Hongda Bao
  • Frank SchwabEmail author
Chapter

Abstract

Surgical management of adult spinal deformity is associated with substantial improvements in health-related quality-of-life scores; provided it is indicated appropriately, a reasonable surgical approach has been selected, and major complications avoided. Parameters to consider in surgical decision-making include clinical presentation, disability level, prior response to nonoperative treatment, and radiographic characteristics of the deformity, and baseline health status of the patient. Coronal and sagittal alignment targets have been conventionally defined based on radiographic correlation with health-related quality-of-life scores. However, recent research shows age-related changes exist in the radiographic alignment of the spine, which is distinct from pathologic degenerative changes. Therefore, an individualized approach for alignment targets is optimal. Mathematical methods can be helpful to predict postoperative radiographic results, but they should be used cautiously because of their inherent limitations. To achieve the goals of alignment restoration, surgery for adult spinal deformity generally consists of three elements: decompression, realignment, and fusion. All three can be performed with various techniques and approaches.

Keywords

Adult spine deformity Age Surgical planning Alignment targets Surgical management 

Abbreviations

ASD

Adult spinal deformity

BMP

Bone morphogenetic protein

C7PL

C7 plumb line

CSVL

Central sacral vertical line

HRQOL

Health-related quality of life

LL

Lumbar lordosis

ODI

Oswestry Disability Index

PCS

Physical component summary

PI

Pelvic incidence

PI-LL

Pelvic incidence–lumbar lordosis

PSO

Pedicle subtraction osteotomy

PT

Pelvic tilt

SF-36

Short-form health survey-36

SS

Sacral slope

SVA

Sagittal vertical axis

TPA

T1 pelvic angle

T1-SPI

T1-spinopelvic inclination

References

  1. 1.
    Schwab F, Dubey A, Gamez L, et al. Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine. 2005;30:1082–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Schwab FJ, Dubey A, Pagala M, et al. Adult scoliosis: a health assessment analysis by SF-36. Spine. 2003;28:602–6. doi: 10.1097/01.BRS.0000049924.94414.BB.PubMedGoogle Scholar
  3. 3.
    Pellisé F, Vila-Casademunt A, Ferrer M, et al. Impact on health related quality of life of adult spinal deformity (ASD) compared with other chronic conditions. Eur Spine J. 2014;24:3–11. doi: 10.1007/s00586-014-3542-1.CrossRefPubMedGoogle Scholar
  4. 4.
    Bess S, Line B, Fu K-M, et al. The health impact of symptomatic adult spinal deformity: comparison of deformity types to united states population norms and chronic diseases. Spine. 2015; doi: 10.1097/BRS.0000000000001202.PubMedCentralGoogle Scholar
  5. 5.
    Turner JD, Walker CT, Mundis GM, Kakarla UK. Health burden of adult spinal deformity compared with other chronic diseases. World Neurosurg. 2015;84:876–7. doi: 10.1016/j.wneu.2015.08.013.CrossRefPubMedGoogle Scholar
  6. 6.
    Smith JS, Shaffrey CI, Glassman SD, et al. Risk-benefit assessment of surgery for adult scoliosis: an analysis based on patient age. Spine. 2011;36:817–24. doi: 10.1097/BRS.0b013e3181e21783.CrossRefPubMedGoogle Scholar
  7. 7.
    Bridwell KH, Glassman S, Horton W, et al. Does treatment (nonoperative and operative) improve the two-year quality of life in patients with adult symptomatic lumbar scoliosis: a prospective multicenter evidence-based medicine study. Spine. 2009;34:2171–8. doi: 10.1097/BRS.0b013e3181a8fdc8.CrossRefPubMedGoogle Scholar
  8. 8.
    Smith JS, Shaffrey CI, Berven S, et al. Improvement of back pain with operative and nonoperative treatment in adults with scoliosis. Neurosurgery. 2009;65:86–93. ; discussion 93–4 doi: 10.1227/01.NEU.0000347005.35282.6C.CrossRefPubMedGoogle Scholar
  9. 9.
    Glassman SD, Carreon LY, Shaffrey CI, et al. The costs and benefits of nonoperative management for adult scoliosis. Spine. 2010;35:578–82. doi: 10.1097/BRS.0b013e3181b0f2f8.CrossRefPubMedGoogle Scholar
  10. 10.
    Slobodyanyuk K, Poorman CE, Smith JS, et al. Clinical improvement through nonoperative treatment of adult spinal deformity: who is likely to benefit? Neurosurg Focus. 2014;36:E2. doi: 10.3171/2014.3.FOCUS1426.CrossRefPubMedGoogle Scholar
  11. 11.
    Smith JS, Fu K-M, Urban P, Shaffrey CI. Neurological symptoms and deficits in adults with scoliosis who present to a surgical clinic: incidence and association with the choice of operative versus nonoperative management. J Neurosurg Spine. 2008;9:326–31. doi: 10.3171/SPI.2008.9.10.326.CrossRefPubMedGoogle Scholar
  12. 12.
    Glassman SD, Berven S, Bridwell K, et al. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine. 2005;30:682–8. doi: 10.1097/01.brs.0000155425.04536.f7.CrossRefPubMedGoogle Scholar
  13. 13.
    Silva FE, Lenke LG. Adult degenerative scoliosis: evaluation and management. Neurosurg Focus. 2010;28:E1. doi: 10.3171/2010.1.FOCUS09271.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee CKS, Kim YT, Hong YM, Yoo JH. Dynamic sagittal imbalance of the spine in degenerative flat back: significance of pelvic tilt in surgical treatment. Spine. 2001;26:2029–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Deschênes S, Charron G, Beaudoin G, et al. Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine. 2010;35:989–94. doi: 10.1097/BRS.0b013e3181bdcaa4.CrossRefPubMedGoogle Scholar
  16. 16.
    Barrey C, Roussouly P, Perrin G, Le Huec J-C. Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J: Off Pub Eur Spine Soc, Eur Spinal Deformity Soc, Eur Sec Cervical Spine Res Soc. 2011;20(Suppl 5):626–33. doi: 10.1007/s00586-011-1930-3.CrossRefGoogle Scholar
  17. 17.
    Mendoza-Lattes S, Ries Z, Gao Y, Weinstein SL. Natural history of spinopelvic alignment differs from symptomatic deformity of the spine. Spine. 2010;35:E792–8. doi: 10.1097/BRS.0b013e3181d35ca9.CrossRefPubMedGoogle Scholar
  18. 18.
    Roussouly P, Gollogly S, Noseda O, et al. The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine. 2006;31:E320–5. doi: 10.1097/01.brs.0000218263.58642.ff.CrossRefPubMedGoogle Scholar
  19. 19.
    Boulay C, Tardieu C, Hecquet J, et al. Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J: Off Publication Eur Spine Soc, Eur Spinal Deformity Soc, Eur Sec Cervical Spine Res Soc. 2006;15:415–22. doi: 10.1007/s00586-005-0984-5.CrossRefGoogle Scholar
  20. 20.
    Vialle R, Levassor N, Rillardon L, et al. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am. 2005;87:260–7. doi: 10.2106/JBJS.D.02043.PubMedGoogle Scholar
  21. 21.
    Legaye J, Duval-Beaupère G, Hecquet J, Marty C. Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J. 1998;7:99–103. doi: 10.1007/s005860050038.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Berthonnaud E, Dimnet J, Roussouly P, Labelle H. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal DisordTech. 2005;18:40–7. doi: 10.1097/01.bsd.0000117542.88865.77.CrossRefGoogle Scholar
  23. 23.
    Schwab FJ, Lafage V, Boyce R, et al. Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine. 2006;31:E959–67. doi: 10.1097/01.brs.0000248126.96737.0f.CrossRefPubMedGoogle Scholar
  24. 24.
    Glassman SD, Bridwell K, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity. Spine. 2005;30:2024–9. doi: 10.1097/01.brs.0000179086.30449.96.CrossRefPubMedGoogle Scholar
  25. 25.
    Lafage V, Schwab FJ, Patel A, et al. Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine. 2009;34:E599–606. doi: 10.1097/BRS.0b013e3181aad219.CrossRefPubMedGoogle Scholar
  26. 26.
    Schwab FJ, Blondel B, Bess S, et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine. 2013;38:E803–12. doi: 10.1097/BRS.0b013e318292b7b9.CrossRefPubMedGoogle Scholar
  27. 27.
    Schwab FJ, Smith V a, Biserni M, et al. (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine 27:387–392. doi:  10.1097/00007632-200202150-00012
  28. 28.
    Schwab FJ, Farcy J, Bridwell K, et al. A clinical impact classification of scoliosis in the adult. Spine. 2006;31:2109–14. doi: 10.1097/01.brs.0000231725.38943.ab.CrossRefPubMedGoogle Scholar
  29. 29.
    Bao; H, Yan; P, Qiu; Y, et al. (2016) Coronal imbalance in degenerative lumbar scoliosis: Prevalence and influence on surgical decision-making for spine osteotomy. Bone Joint J 98-B:Google Scholar
  30. 30.
    Schwab FJ, Ungar B, Blondel B, et al. Scoliosis Research Society-Schwab adult spinal deformity classification: a validation study. Spine. 2012;37:1077–82. doi: 10.1097/BRS.0b013e31823e15e2.CrossRefPubMedGoogle Scholar
  31. 31.
    Smith JS, Bess S, Shaffrey CI, et al. Dynamic changes of the pelvis and spine are key to predicting postoperative sagittal alignment after pedicle subtraction osteotomy: a critical analysis of preoperative planning techniques. Spine. 2012;37:845–53. doi: 10.1097/BRS.0b013e31823b0892.CrossRefPubMedGoogle Scholar
  32. 32.
    Protopsaltis TS, Schwab FJ, Bronsard N, et al. The t1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg Am. 2014;96:1631–40. doi: 10.2106/JBJS.M.01459.CrossRefPubMedGoogle Scholar
  33. 33.
    Schwab FJ, Patel A, Ungar B, et al. Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine. 2010;35:2224–31. doi: 10.1097/BRS.0b013e3181ee6bd4.CrossRefPubMedGoogle Scholar
  34. 34.
    Lafage R, Schwab F, Challier V, et al. Defining spino-pelvic alignment thresholds: should operative goals in adult spinal deformity surgery account for age? Spine. 2016;41:62–8. doi: 10.1097/BRS.0000000000001171.CrossRefPubMedGoogle Scholar
  35. 35.
    Lau D, Clark AJ, Scheer JK, et al. Proximal junctional kyphosis and failure after spinal deformity surgery: a systematic review of the literature as a background to classification development. Spine. 2014;39:2093–102. doi: 10.1097/BRS.0000000000000627.CrossRefPubMedGoogle Scholar
  36. 36.
    Ondra SL, Marzouk S, Koski T, et al. (2006) Mathematical calculation of pedicle subtraction osteotomy size to allow precision correction of fixed sagittal deformity. Spine (Phila Pa 1976) 31:E973–E979. doi:  10.1097/01.brs.0000247950.02886.e5. 00007632-200612010-00024 [pii].
  37. 37.
    Yang BP, Ondra SL. A method for calculating the exact angle required during pedicle subtraction osteotomy for fixed sagittal deformity: comparison with the trigonometric method. Neurosurgery. 2006;59:458–63. doi: 10.1227/01.NEU.0000232628.46247.15.Google Scholar
  38. 38.
    Ames CP, Smith JS, Scheer JK, et al. Impact of spinopelvic alignment on decision making in deformity surgery in adults: a review. J Neurosurg Spine. 2012;16:547–64. doi: 10.3171/2012.2.SPINE11320.CrossRefPubMedGoogle Scholar
  39. 39.
    Le Huec J-CC, Leijssen P, Duarte M, Aunoble S. Thoracolumbar imbalance analysis for osteotomy planification using a new method: FBI technique. Eur Spine J: Off Pub Eur Spine Soc, Eur Spinal Deformity Soc, Eur Sec Cervical Spine Res Soc. 2011;20(Suppl 5):669–80. doi: 10.1007/s00586-011-1935-y.CrossRefGoogle Scholar
  40. 40.
    Schwab FJ, Lafage V, Patel A, Farcy J-P. Sagittal plane considerations and the pelvis in the adult patient. Spine. 2009;34:1828–33. doi: 10.1097/BRS.0b013e3181a13c08.CrossRefPubMedGoogle Scholar
  41. 41.
    Klineberg E, Schwab FJ, Ames CP, et al. Acute reciprocal changes distant from the site of spinal osteotomies affect global postoperative alignment. Adv Orthop. 2011;2011:415946. doi: 10.4061/2011/415946.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schwab FJ, Patel A, Shaffrey CI, et al. Sagittal realignment failures following pedicle subtraction osteotomy surgery: are we doing enough?: Clinical article. J Neurosurg Spine. 2012;16:539–46. doi: 10.3171/2012.2.SPINE11120.CrossRefPubMedGoogle Scholar
  43. 43.
    Lafage V, Ames C, Schwab FJ, et al. Changes in thoracic kyphosis negatively impact sagittal alignment after lumbar pedicle subtraction osteotomy: a comprehensive radiographic analysis. Spine. 2012;37:E180–7. doi: 10.1097/BRS.0b013e318225b926.CrossRefPubMedGoogle Scholar
  44. 44.
    Mummaneni PV, Shaffrey CI, Lenke LG, et al. The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery. Neurosurg Focus. 2014;36:E6. doi: 10.3171/2014.3.FOCUS1413.CrossRefPubMedGoogle Scholar
  45. 45.
    Mummaneni PV, Tu T-H, Ziewacz JE, et al. The role of minimally invasive techniques in the treatment of adult spinal deformity. Neurosurg Clin N Am. 2013;24:231–48. doi: 10.1016/j.nec.2012.12.004.CrossRefPubMedGoogle Scholar
  46. 46.
    Schwab F, Blondel B, Chay E, et al. The comprehensive anatomical spinal osteotomy classification. Neurosurgery. 2015;76(Suppl 1):S33–41. ; discussion S41 doi: 10.1227/01.neu.0000462076.73701.09.CrossRefPubMedGoogle Scholar
  47. 47.
    Kim YJ, Bridwell KH, Lenke LG, et al. An analysis of sagittal spinal alignment following long adult lumbar instrumentation and fusion to L5 or S1: can we predict ideal lumbar lordosis? Spine. 2006;31:2343–52. doi: 10.1097/01.brs.0000238970.67552.f5.CrossRefPubMedGoogle Scholar
  48. 48.
    Yang BP, Yang CW, Ondra SL. A novel mathematical model of the sagittal spine. Spine. 2007;32:466–70. doi: 10.1097/01.brs.0000255207.44141.e9.CrossRefPubMedGoogle Scholar
  49. 49.
    Rose PS, Bridwell KH, Lenke LG, et al. Role of pelvic incidence, thoracic kyphosis, and patient factors on sagittal plane correction following pedicle subtraction osteotomy. Spine. 2009;34:785–91. doi: 10.1097/BRS.0b013e31819d0c86.CrossRefPubMedGoogle Scholar
  50. 50.
    Lafage V, Schwab FJ, Vira S, et al. Spino-pelvic parameters after surgery can be predicted: a preliminary formula and validation of standing alignment. Spine. 2011;36:1037–45. doi: 10.1097/BRS.0b013e3181eb9469.CrossRefPubMedGoogle Scholar
  51. 51.
    Lafage V, Bharucha NJ, Schwab FJ, et al. Multicenter validation of a formula predicting postoperative spinopelvic alignment. J Neurosur Spine. 2012;16:15–21. doi: 10.3171/2011.8.SPINE11272.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Hospital for Special SurgeryWeil-Cornell School of MedicineNew YorkUSA

Personalised recommendations