Skip to main content

Imaging Adult Lumbar Scoliosis

  • Chapter
  • First Online:
Adult Lumbar Scoliosis

Abstract

Radiographic assessment is an integral component of the evaluation and management of lumbar scoliosis. Although lumbar deformity is relatively common, the complexity and uniqueness of a patient’s specific deformity and symptoms necessitates a thorough assessment of each individual case. Fortunately for patients and clinicians, modern imaging modalities permit the evaluation of the bony, neuromuscular, and soft tissue components of the spine with exquisite detail. The spine surgeon is equipped with many tools used to evaluate a patient radiographically with guidance based on history, physical exam, and specific clinical questions. Some of these tools include conventional radiography, computed tomography (CT), and magnetic resonance imaging (MRI), each of which may be adapted or occasionally substituted as necessary to glean specific information. The primary goal of this chapter is to introduce the imaging modalities used to assess patients during each phase of evaluation and their applications to particular clinical scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willen J, Danielson B. The diagnostic effect from axial loading of the lumbar spine during computed tomography and magnetic resonance imaging in patients with degenerative disorders. Spine (Phila Pa 1976). 2001;26(23):2607–14.

    Article  CAS  Google Scholar 

  2. Yazici M et al. Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop. 2001;21(2):252–6.

    CAS  PubMed  Google Scholar 

  3. Zetterberg C et al. Postural and time-dependent effects on body height and scoliosis angle in adolescent idiopathic scoliosis. Acta Orthop Scand. 1983;54(6):836–40.

    Article  CAS  PubMed  Google Scholar 

  4. Maggio D et al. Assessment of impact of standing long-cassette radiographs on surgical planning for lumbar pathology: an international survey of spine surgeons. J Neurosurg Spine. 2015 Jul 31:1–8. [Epub ahead of print].

    Google Scholar 

  5. Horton WC et al. Is there an optimal patient stance for obtaining a lateral 36″ radiograph? A critical comparison of three techniques. Spine (Phila Pa 1976). 2005;30(4):427–33.

    Google Scholar 

  6. McKenna C et al. EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation. Health Technol Assess. 2012;16(14):1–188.

    Article  CAS  PubMed Central  Google Scholar 

  7. Kalifa G et al. Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol. 1998;28(7):557–61.

    Article  CAS  PubMed  Google Scholar 

  8. Smith-Bindman R et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Le Bras A et al. 3D detailed reconstruction of vertebrae with low dose digital stereoradiography. Stud Health Technol Inform. 2002;91:286–90.

    CAS  PubMed  Google Scholar 

  10. Pritchett JW, Bortel DT. Degenerative symptomatic lumbar scoliosis. Spine (Phila Pa 1976). 1993;18(6):700–3.

    Article  CAS  Google Scholar 

  11. Korovessis P et al. Adult idiopathic lumbar scoliosis. A formula for prediction of progression and review of the literature. Spine (Phila Pa 1976). 1994;19(17):1926–32.

    Article  CAS  Google Scholar 

  12. Lehman Jr RA et al. Do intraoperative radiographs in scoliosis surgery reflect radiographic result? Clin Orthop Relat Res. 2010;468(3):679–86.

    Article  PubMed  Google Scholar 

  13. Kim YJ et al. Free hand pedicle screw placement in the thoracic spine: is it safe? Spine (Phila Pa 1976). 2004;29(3):333–42. discussion 342

    Article  Google Scholar 

  14. Daniels AH et al. Functional limitations due to lumbar stiffness in adults with and without spinal deformity. Spine (Phila Pa 1976). 2015;40(20):1599–604.

    Article  Google Scholar 

  15. Cheung KM et al. Predictability of the fulcrum bending radiograph in scoliosis correction with alternate-level pedicle screw fixation. J Bone Joint Surg Am. 2010;92(1):169–76.

    Article  PubMed  Google Scholar 

  16. Cheung WY, Lenke LG, Luk KD. Prediction of scoliosis correction with thoracic segmental pedicle screw constructs using fulcrum bending radiographs. Spine (Phila Pa 1976). 2010;35(5):557–61.

    Article  Google Scholar 

  17. Kuklo TR et al. Correlation of radiographic, clinical, and patient assessment of shoulder balance following fusion versus nonfusion of the proximal thoracic curve in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2002;27(18):2013–20.

    Article  Google Scholar 

  18. Duval-Beaupere G, Lespargot A, Grossiord A. Flexibility of scoliosis. What does it mean? Is this terminology appropriate? Spine (Phila Pa 1976). 1985;10(5):428–32.

    Article  CAS  Google Scholar 

  19. Engsberg JR et al. Methods to locate center of gravity in scoliosis. Spine (Phila Pa 1976). 2003;28(23):E483–9.

    Article  Google Scholar 

  20. Glassman SD et al. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976). 2005;30(6):682–8.

    Article  Google Scholar 

  21. Hamzaoglu A et al. Assessment of curve flexibility in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2005;30(14):1637–42.

    Article  Google Scholar 

  22. Cheh G et al. The reliability of preoperative supine radiographs to predict the amount of curve flexibility in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2007;32(24):2668–72.

    Article  Google Scholar 

  23. Lazennec JY et al. Total Hip Prostheses in Standing, Sitting and Squatting Positions: an overview of our 8 years practice using the EOS imaging technology. Open Orthop J. 2015;9:26–44.

    PubMed  PubMed Central  Google Scholar 

  24. Lazennec JY, Brusson A, Rousseau M-A. THA patients in standing and sitting positions: a prospective evaluation using the low-dose “Full-Body” EOS® imaging system. Semin Arthroplasty. 2012;23(4):220–5.

    Article  Google Scholar 

  25. Dobbs MB et al. Can we predict the ultimate lumbar curve in adolescent idiopathic scoliosis patients undergoing a selective fusion with undercorrection of the thoracic curve? Spine (Phila Pa 1976). 2004;29(3):277–85.

    Article  Google Scholar 

  26. Fu KM et al. Prevalence, severity, and impact of foraminal and canal stenosis among adults with degenerative scoliosis. Neurosurgery. 2011;69(6):1181–7.

    Article  PubMed  Google Scholar 

  27. Torell G et al. Standing and supine Cobb measures in girls with idiopathic scoliosis. Spine (Phila Pa 1976). 1985;10(5):425–7.

    Article  CAS  Google Scholar 

  28. Gocen S, Havitcioglu H, Alici E. A new method to measure vertebral rotation from CT scans. Eur Spine J. 1999;8(4):261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oskouian Jr RJ, Shaffrey CI. Degenerative lumbar scoliosis. Neurosurg Clin N Am. 2006;17(3):299–315. vii

    Article  PubMed  Google Scholar 

  30. Somoskeoy S et al. Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J. 2012;12(11):1052–9.

    Article  PubMed  Google Scholar 

  31. Rupp R et al. Magnetic resonance imaging evaluation of the spine with metal implants. General safety and superior imaging with titanium. Spine (Phila Pa 1976). 1993;18(3):379–85.

    Article  CAS  Google Scholar 

  32. Teresi LM et al. Asymptomatic degenerative disk disease and spondylosis of the cervical spine: MR imaging. Radiology. 1987;164(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bednarik J et al. Presymptomatic spondylotic cervical cord compression. Spine (Phila Pa 1976). 2004;29(20):2260–9.

    Article  Google Scholar 

  34. Mair WG, Druckman R. The pathology of spinal cord lesions and their relation to the clinical features in protrusion of cervical intervertebral discs; a report of four cases. Brain. 1953;76(1):70–91.

    Article  CAS  PubMed  Google Scholar 

  35. Lonstein JE et al. Complications associated with pedicle screws. J Bone Joint Surg Am. 1999;81(11):1519–28.

    Article  CAS  PubMed  Google Scholar 

  36. Lee P, Fessler RG. Perioperative and postoperative complications of single-level minimally invasive transforaminal lumbar interbody fusion in elderly adults. J Clin Neurosci. 2012;19(1):111–4.

    Article  PubMed  Google Scholar 

  37. Castro WH et al. Accuracy of pedicle screw placement in lumbar vertebrae. Spine (Phila Pa 1976). 1996;21(11):1320–4.

    Article  CAS  Google Scholar 

  38. Djukic S et al. Magnetic resonance imaging of the postoperative lumbar spine. Radiol Clin North Am. 1990;28(2):341–60.

    CAS  PubMed  Google Scholar 

  39. Van Goethem JW, Parizel PM, Jinkins JR. Review article: MRI of the postoperative lumbar spine. Neuroradiology. 2002;44(9):723–39.

    Article  CAS  PubMed  Google Scholar 

  40. Saito S, Katsube H, Kobayashi Y. Spinal epidural hematoma with spontaneous recovery demonstrated by magnetic resonance imaging. Spine (Phila Pa 1976). 1994;19(4):483–6.

    Article  CAS  Google Scholar 

  41. Wang JC, Bohlman HH, Riew KD. Dural tears secondary to operations on the lumbar spine. Management and results after a two-year-minimum follow-up of eighty-eight patients. J Bone Joint Surg Am. 1998;80(12):1728–32.

    Article  CAS  PubMed  Google Scholar 

  42. Tafazal SI, Sell PJ. Incidental durotomy in lumbar spine surgery: incidence and management. Eur Spine J. 2005;14(3):287–90.

    Article  PubMed  Google Scholar 

  43. Saxler G et al. The long-term clinical sequelae of incidental durotomy in lumbar disc surgery. Spine (Phila Pa 1976). 2005;30(20):2298–302.

    Article  Google Scholar 

  44. Cammisa Jr FP et al. Incidental durotomy in spine surgery. Spine (Phila Pa 1976). 2000;25(20):2663–7.

    Article  Google Scholar 

  45. Gundry CR, Heithoff KB. Imaging evaluation of patients with spinal deformity. Orthop Clin North Am. 1994;25(2):247–64.

    CAS  PubMed  Google Scholar 

  46. Mokri B. Spontaneous cerebrospinal fluid leaks: from intracranial hypotension to cerebrospinal fluid hypovolemia – evolution of a concept. Mayo Clin Proc. 1999;74(11):1113–23.

    Article  CAS  PubMed  Google Scholar 

  47. Bosacco SJ, Gardner MJ, Guille JT. Evaluation and treatment of dural tears in lumbar spine surgery: a review. Clin Orthop Relat Res. 2001;389:238–47.

    Article  Google Scholar 

  48. Nam TK et al. Remote cerebellar hemorrhage after lumbar spinal surgery. J Korean Neurosurg Soc. 2009;46(5):501–4.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Khalatbari MR, Khalatbari I, Moharamzad Y. Intracranial hemorrhage following lumbar spine surgery. Eur Spine J. 2012;21(10):2091–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Akbar JJ et al. The role of MR myelography with intrathecal gadolinium in localization of spinal CSF leaks in patients with spontaneous intracranial hypotension. AJNR Am J Neuroradiol. 2012;33(3):535–40.

    Article  CAS  PubMed  Google Scholar 

  51. Herkowitz HN, Sidhu KS. Lumbar spine fusion in the treatment of degenerative conditions: current indications and recommendations. J Am Acad Orthop Surg. 1995;3(3):123–35.

    Article  CAS  PubMed  Google Scholar 

  52. Grubb SA, Lipscomb HJ, Suh PB. Results of surgical treatment of painful adult scoliosis. Spine (Phila Pa 1976). 1994;19(14):1619–27.

    Article  CAS  Google Scholar 

  53. Berjano P et al. Fusion rate following extreme lateral lumbar interbody fusion. Eur Spine J. 2015;24(Suppl 3):369–71.

    Article  PubMed  Google Scholar 

  54. DePalma AF, Rothman RH. The nature of pseudarthrosis. Clin Orthop Relat Res. 1968;59:113–8.

    Article  CAS  PubMed  Google Scholar 

  55. Chun DS, Baker KC, Hsu WK. Lumbar pseudarthrosis: a review of current diagnosis and treatment. Neurosurg Focus. 2015;39(4):E10.

    Article  PubMed  Google Scholar 

  56. Brodsky AE, Kovalsky ES, Khalil MA. Correlation of radiologic assessment of lumbar spine fusions with surgical exploration. Spine (Phila Pa 1976). 1991;16(6 Suppl):S261–5.

    Article  CAS  Google Scholar 

  57. Kant AP et al. Evaluation of lumbar spine fusion. Plain radiographs versus direct surgical exploration and observation. Spine (Phila Pa 1976). 1995;20(21):2313–7.

    Article  CAS  Google Scholar 

  58. Larsen JM, Capen DA. Pseudarthrosis of the Lumbar Spine. J Am Acad Orthop Surg. 1997;5(3):153–62.

    Article  CAS  PubMed  Google Scholar 

  59. Kanemura T et al. Radiographic changes in patients with pseudarthrosis after posterior lumbar interbody arthrodesis using carbon interbody cages: a prospective five-year study. J Bone Joint Surg Am. 2014;96(10):e82.

    Article  PubMed  Google Scholar 

  60. Carreon LY et al. Diagnostic accuracy and reliability of fine-cut CT scans with reconstructions to determine the status of an instrumented posterolateral fusion with surgical exploration as reference standard. Spine (Phila Pa 1976). 2007;32(8):892–5.

    Article  Google Scholar 

  61. Richards BS. Delayed infections following posterior spinal instrumentation for the treatment of idiopathic scoliosis. J Bone Joint Surg Am. 1995;77(4):524–9.

    Article  CAS  PubMed  Google Scholar 

  62. Ray CD. Threaded fusion cages for lumbar interbody fusions. An economic comparison with 360 degrees fusions. Spine (Phila Pa 1976). 1997;22(6):681–5.

    Article  CAS  Google Scholar 

  63. Schwab F, Dubey A, Gamez L, El Fegoun AB, Hwang K, Pagala M, Farcy JP. Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976). 2005;30(9):1082–5.

    Article  Google Scholar 

  64. Lubelski D, Choma TJ, Steinmetz MP, Harrop JS, Mroz TE. Perioperative medical management of spine surgery patients with osteoporosis. Neurosurgery. 2015;77(Suppl 4):S92–7.

    Article  PubMed  Google Scholar 

  65. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. American College of Radiology. ACR-SPR-SSR practice parameter for the performance of dual-energy x-ray absorptiometry (DXA)—Res 31. Amended 2014 (Res 39, 2013).

    Google Scholar 

  67. Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG. Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone JointSurg Am. 2011;93:1057–63.

    Article  Google Scholar 

  68. Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med. 2013;158:588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Watanabe K, Lenke LG, Bridwell KH, et al. Proximal junctional vertebral fracture in adults after spinal deformity surgery using pedicle screw constructs: analysis of morphological features. Spine (Phila Pa 1976). 2010;35:138–45.

    Article  Google Scholar 

  70. Yagi M, Akilah KB, Oheneba B. Incidence, risk factors and classification of proximal junctional kyphosis: surgical outcomes review of adult idiopathic scoliosis. Spine (Phila Pa 1976). 2010;36(1):9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Themistocles Protopsaltis MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cruz, D.L., Protopsaltis, T. (2017). Imaging Adult Lumbar Scoliosis. In: Klineberg, E. (eds) Adult Lumbar Scoliosis. Springer, Cham. https://doi.org/10.1007/978-3-319-47709-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47709-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47707-7

  • Online ISBN: 978-3-319-47709-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics