Skip to main content

Record Statistics of Equities and Market Indices

  • 815 Accesses

Part of the New Economic Windows book series (NEW)

Abstract

Record events in a time series denotes those events whose magnitude is the largest or smallest amongst all the events until any time N. Record statistics is emerging as another statistical tool to understand and characterise properties of time series. The study of records in uncorrelated time series dates back to 60 years while that for correlated time series is beginning to receive research attention now. Most of these investigations are aided by the applications in finance and climate related studies, primarily due to relatively easy availability of long measured time series data. Record statistics in respect of empirical financial time series data has begun to attract attention recently. In this work, we first review some of the results related to record statistics of random walks and its application to stock market data. Finally, we also show through the analysis of empirical data that for the market indices too the distribution of intervals between record events follow a power law with exponent lying the range 1.5–2.0.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-47705-3_7
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-47705-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6

References

  • P. Doukhan, G. Oppenheim and M. S. Taqqu, Theory and Applications of Long-Range Dependence, (Springer, 2003).

    Google Scholar 

  • Yaniv Edery, Alexander B. Kostinski, Satya N. Majumdar, and Brian Berkowitz, Phys. Rev. Lett. 110, 180602 (2013).

    Google Scholar 

  • Eugene F. Fama, Fin. Anal. J. 51, 75 (1995); see also, Andrew W. Lo and A. Craig MacKinlay, Rev. Financ. Stud. 1, 41 (1988);

    Google Scholar 

  • Guinness World Records, http://www.guinnessworldrecords.com. Cited 30 Apr 2016.

  • Plamen Ch. Ivanov et. al., Nature 399, 461 (1999); Plamen Ch. Ivanov et. al., Chaos 11, 641 (2001).

    Google Scholar 

  • Satya N. Majumdar and Robert M. Ziff, Phys. Rev. Lett. 101, 050601 (2008).

    Google Scholar 

  • Satya N. Majumdar, Grégory Schehr and Gregor Wergen, J. Phys. A 45, 355002 (2012); Alan J Bray, Satya N Majumdar, Grégory Schehr, Adv. Phys. 62, 225 (2013).

    Google Scholar 

  • W. I. Newman, B. D. Malamud and D. L. Turcotte, Phys. Rev. E 82, 066111 (2010); G. Wergen and J. Krug, EPL 92, 30008 (2010); S. Rahmstorf and D. Coumou, PNAS 108, 17905 (2011); Gregor Wergen, Andreas Hense, Joachim Krug, Clim. Dyn. 22, 1 (2015); M. Bador, L. Terray and J. Boe, Geophys. Res. Lett. 43 1 (2016).

    Google Scholar 

  • L. P. Oliveira, H. J. Jensen, M. Nicodemi and P. Sibani, Phys. Rev. B 71, 104526 (2005); P. Sibani, G. F. Rodriguez, and G. G. Kenning, Phys. Rev. B 74, 224407 (2006); Shashi C. L. Srivastava, A. Lakshminarayan and Sudhir R. Jain, Europhys. Lett. 101, 10003 (2013).

    Google Scholar 

  • S. Redner and Mark R. Petersen, Phys. Rev. E 74, 061114 (2006).

    Google Scholar 

  • Joseph Rudnick and George Gaspari, Elements of the Random Walk, (Cambridge University Press, 2004).

    Google Scholar 

  • D. Ruppert, Statistics and Finance: An Introduction, (Springer, New York, 2006).

    Google Scholar 

  • David Ruppert, Statistics and Data Analysis for Financial Engineering, (Springer, New York, 2011); Frank J. Fabozzi, Encyclopedia of Financial Models, 1st ed. (Wiley, New York, 2012).

    Google Scholar 

  • Sanjib Sabhapandit, EPL 94, 20003 (2011).

    Google Scholar 

  • Behlool Sabir and M. S. Santhanam, Phys. Rev. E 90, 032126 (2014).

    Google Scholar 

  • B. Schmittmann and R. K. P. Zia, Am. J. Phys. 67 1269 (1999); Joachim Krug, J. Stat. Mech. (Theory and Expt) P07001 (2007); Gregor Wergen, J. Phys. A : Math. Theor. 46, 223001 (2013).

    Google Scholar 

  • D. L. Turcotte and John Rundle, PNAS 99, 2463–2465 (2002) and all other papers in this issue of PNAS.

    Google Scholar 

  • Wikipedia entry on Chennai floods of 2015. https://en.wikipedia.org/wiki/2015_South_Indian_floods

  • Gregor Wergen, Miro Bogner and Joachim Krug, Phys. Rev. E 83, 051109 (2011).

    Google Scholar 

  • Gregor Wergen, Satya N. Majumdar, and Grégory Schehr, Phys. Rev. E 86, 011119 (2012).

    Google Scholar 

  • Gregor Wergen, Physica A 396, 114 (2014).

    Google Scholar 

Download references

Acknowledgements

AK would like to thank DST-INSPIRE for the fellowship. We acknowledge the useful data provided from http://finance.yahoo.com without which this work would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Santhanam .

Editor information

Editors and Affiliations

Appendix

Appendix

The details of the indices data used are given here. The data is available in the public domain and can be accessed from http://finance.yahoo.com.

Index

Length of data

Years covered

AMEX Composite

5117

1996–2016

BSE

4650

1997–2016

CAC40

6628

1990–2016

DAX

6434

1990–2016

FTSE100

8412

1984–2016

HANGSENG

7291

1987–2016

NASDAQ 100

7706

1985–2016

NASDAQ composite

11404

1971–2016

NIKKEI

7958

1984–2016

SHANGHAI

6465

1990–2016

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Santhanam, M.S., Kumar, A. (2017). Record Statistics of Equities and Market Indices. In: , et al. Econophysics and Sociophysics: Recent Progress and Future Directions. New Economic Windows. Springer, Cham. https://doi.org/10.1007/978-3-319-47705-3_7

Download citation