Skip to main content

Methods for Reconstructing Interbank Networks from Limited Information: A Comparison

  • Conference paper
  • First Online:
Econophysics and Sociophysics: Recent Progress and Future Directions

Part of the book series: New Economic Windows ((NEW))

Abstract

In this chapter, we review and compare some methods for the reconstruction of an interbank network from limited information. By exploiting the theory of complex networks and some ideas from statistical physics, we mainly focus on three different methods based on the maximum entropy principle, the relative entropy minimization, and the fitness model. We apply our analysis to the credit network of electronic Market for Interbank Deposit (e-MID) in 2011. In comparing the goodness of fit of the proposed methods, we look at the topological network properties and how reliably each method reproduces the real-world network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The weighted adjacency matrix or weights matrix is the generalization of the adjacency matrix in the case of weighted (directed) graphs.

  2. 2.

    Relative entropy is also known as cross-entropy or Kullback-Leibler divergence.

  3. 3.

    The word bosonic is used for the analogy with the Bose gas in Physics since the probability distribution for the considered model turns out to be the Bose-Einstein statistics.

  4. 4.

    \(C_i(G)\) is the value of the observable \(C_i\) associated with graph G of the ensemble. In the micro-canonical ensemble, we choose \(C_i(G)\) equal to the observed quantity \(C_i^*\) for each graph G in the ensemble. In the canonical ensemble, this equality holds only in average.

  5. 5.

    In the grand canonical ensemble, the solution is unique except for a specific shift of the Lagrange multipliers (symmetry of the Hamiltonian of the network models).

  6. 6.

    The standard configuration model is the network model obtained by imposing the degree sequence rather than the strength sequence.

  7. 7.

    Similar results are obtained for the out-degree distribution.

  8. 8.

    We applied the statistical analysis for different aggregation time scales and for different periods in the year 2011 and we obtained always the same results. In this sense, the analyzed properties are stationary for the e-MID market, at least in the year 2011.

  9. 9.

    In the Italian Overnight Money Market, some links are very persistent in time, that is some banks tend to create credit relations with the same counterparts. By looking at the data aggregates in time, total exposure of a bank may be large but all credit transactions occur with the same counterpart. The persistence of credit relations is not capture by fitness model.

References

  • Allen, F. and Gale, D. (2000). Financial contagion. Journal of political economy, 108(1):1–33.

    Article  Google Scholar 

  • Almog, A., Squartini, T., and Garlaschelli, D. (2015). A gdp-driven model for the binary and weighted structure of the international trade network. New Journal of Physics, 17(1):013009.

    Article  ADS  Google Scholar 

  • Bacharach, M. (1965). Estimating nonnegative matrices from marginal data. International Economic Review, 6(3):294–310.

    Article  MATH  Google Scholar 

  • Bargigli, L. (2014). Statistical ensembles for economic networks. Journal of Statistical Physics, 155(4):810–825.

    Article  MathSciNet  MATH  Google Scholar 

  • Bargigli, L., di Iasio, G., Infante, L., Lillo, F., and Pierobon, F. (2015). The multiplex structure of interbank networks. Quantitative Finance, 15:673–691.

    Article  MathSciNet  Google Scholar 

  • Barucca, P. and Lillo, F. (2015). The organization of the interbank network and how ecb unconventional measures affected the e-mid overnight market. http://arxiv.org/abs/1511.08068.

  • Barucca, P. and Lillo, F. (2016). Disentangling bipartite and core-periphery structure in financial networks. Chaos, Solitons & Fractals, 88:244–253.

    Article  ADS  MathSciNet  Google Scholar 

  • Battiston, S., Puliga, M., Kaushik, R., Tasca, P., and Caldarelli, G. (2012). Debtrank: Too central to fail? financial networks, the fed and systemic risk. Scientific reports, 2.

    Google Scholar 

  • Billio, M., Getmansky, M., Lo, A. W., and Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of Financial Economics, 104(3):535–559.

    Article  Google Scholar 

  • Blien, U. and Graef, F. (1991). Entropy optimization in empirical economic research-the estimation of tables from incomplete information. JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 208(4):399–413.

    Google Scholar 

  • Boguná, M. and Pastor-Satorras, R. (2003). Class of correlated random networks with hidden variables. Physical Review E, 68(3):036112.

    Article  ADS  Google Scholar 

  • Bonanno, G., Caldarelli, G., Lillo, F., and Mantegna, R. N. (2003). Topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68(4):046130.

    Article  ADS  Google Scholar 

  • Bregman, L. M. (1967). Proof of the convergence of sheleikhovskii’s method for a problem with transportation constraints. USSR Computational Mathematics and Mathematical Physics, 7(1):191–204.

    Article  Google Scholar 

  • Caccioli, F., Shrestha, M., Moore, C., and Farmer, J. D. (2014). Stability analysis of financial contagion due to overlapping portfolios. Journal of Banking & Finance, 46:233–245.

    Article  Google Scholar 

  • Caldarelli, G., Capocci, A., De Los Rios, P., and Munoz, M. A. (2002). Scale-free networks from varying vertex intrinsic fitness. Physical review letters, 89(25):258702.

    Article  ADS  Google Scholar 

  • Caldarelli, G., Chessa, A., Pammolli, F., Gabrielli, A., and Puliga, M. (2013). Reconstructing a credit network. Nature Physics, 9(3):125–126.

    Article  ADS  Google Scholar 

  • Cimini, G., Squartini, T., Gabrielli, A., and Garlaschelli, D. (2015a). Estimating topological properties of weighted networks from limited information. Physical Review E, 92(4):040802.

    Article  ADS  Google Scholar 

  • Cimini, G., Squartini, T., Garlaschelli, D., and Gabrielli, A. (2015b). Systemic risk analysis on reconstructed economic and financial networks. Scientific reports, 5.

    Google Scholar 

  • Cont, R., Moussa, A., et al. (2010). Network structure and systemic risk in banking systems. Edson Bastos e, Network Structure and Systemic Risk in Banking Systems (December 1, 2010).

    Google Scholar 

  • De Masi, G., Iori, G., and Caldarelli, G. (2006). Fitness model for the italian interbank money market. Physical Review E, 74(6):066112.

    Article  ADS  Google Scholar 

  • Di Gangi, D., Lillo, F., and Pirino, D. (2015). Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction. Available at SSRN 2639178.

    Google Scholar 

  • Gai, P. and Kapadia, S. (2010). Contagion in financial networks. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, page rspa20090410. The Royal Society.

    Google Scholar 

  • Garlaschelli, D. and Loffredo, M. I. (2004). Fitness-dependent topological properties of the world trade web. Physical review letters, 93(18):188701.

    Article  ADS  Google Scholar 

  • Garlaschelli, D. and Loffredo, M. I. (2008). Maximum likelihood: Extracting unbiased information from complex networks. Physical Review E, 78(1):015101.

    Article  ADS  Google Scholar 

  • Garlaschelli, D. and Loffredo, M. I. (2009). Generalized bose-fermi statistics and structural correlations in weighted networks. Physical review letters, 102(3):038701.

    Article  ADS  Google Scholar 

  • Geyer, C. J. and Thompson, E. A. (1992). Constrained monte carlo maximum likelihood for dependent data. Journal of the Royal Statistical Society. Series B (Methodological), pages 657–699.

    Google Scholar 

  • Iori, G., De Masi, G., Precup, O. V., Gabbi, G., and Caldarelli, G. (2008). A network analysis of the italian overnight money market. Journal of Economic Dynamics and Control, 32(1):259–278.

    Article  MATH  Google Scholar 

  • Mastromatteo, I., Zarinelli, E., and Marsili, M. (2012). Reconstruction of financial networks for robust estimation of systemic risk. Journal of Statistical Mechanics: Theory and Experiment, 2012(03):P03011.

    Article  Google Scholar 

  • Mistrulli, P. E. (2011). Assessing financial contagion in the interbank market: Maximum entropy versus observed interbank lending patterns. Journal of Banking & Finance, 35(5):1114–1127.

    Article  Google Scholar 

  • Musmeci, N., Battiston, S., Caldarelli, G., Puliga, M., and Gabrielli, A. (2013). Bootstrapping topological properties and systemic risk of complex networks using the fitness model. Journal of Statistical Physics, 151(3-4):720–734.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Newman, M. E. (2002). Assortative mixing in networks. Physical review letters, 89(20):208701.

    Article  ADS  Google Scholar 

  • Newman, M. E. (2003). Mixing patterns in networks. Physical Review E, 67(2):026126.

    Article  ADS  MathSciNet  Google Scholar 

  • Park, J. and Newman, M. E. (2004). Statistical mechanics of networks. Physical Review E, 70(6):066117.

    Article  ADS  MathSciNet  Google Scholar 

  • Servedio, V. D., Caldarelli, G., and Butta, P. (2004). Vertex intrinsic fitness: How to produce arbitrary scale-free networks. Physical Review E, 70(5):056126.

    Article  ADS  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Tech. J, 27:623.

    Article  MathSciNet  MATH  Google Scholar 

  • Sheldon, G., Maurer, M., et al. (1998). Interbank lending and systemic risk: an empirical analysis for switzerland. REVUE SUISSE D ECONOMIE POLITIQUE ET DE STATISTIQUE, 134:685–704.

    Google Scholar 

  • Silvestri, L. and Cont, R. (2015). Essays on systemic risk, financial networks and macro-prudential regulation. PhD Thesis.

    Google Scholar 

  • Snijders, T. A. (2002). Markov chain monte carlo estimation of exponential random graph models. Journal of Social Structure, 3(2):1–40.

    Google Scholar 

  • Squartini, T. and Garlaschelli, D. (2011). Analytical maximum-likelihood method to detect patterns in real networks. New Journal of Physics, 13(8):083001.

    Article  ADS  Google Scholar 

  • Squartini, T., Mastrandrea, R., and Garlaschelli, D. (2015). Unbiased sampling of network ensembles. New Journal of Physics, 17(2):023052.

    Article  ADS  Google Scholar 

  • Upper, C. and Worms, A. (2004). Estimating bilateral exposures in the german interbank market: Is there a danger of contagion? European Economic Review, 48(4):827–849.

    Article  Google Scholar 

  • Van Duijn, M. A., Gile, K. J., and Handcock, M. S. (2009). A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models. Social Networks, 31(1):52–62.

    Article  Google Scholar 

  • Wells, S. J. (2004). Financial interlinkages in the united kingdom’s interbank market and the risk of contagion.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the European Community H2020 Program under the scheme INFRAIA-1- 2014–2015: Research Infrastructures, grant agreement no. 654024 SoBigData: Social Mining & Big Data Ecosystem (http://www.sobigdata.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Mazzarisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mazzarisi, P., Lillo, F. (2017). Methods for Reconstructing Interbank Networks from Limited Information: A Comparison. In: Abergel, F., et al. Econophysics and Sociophysics: Recent Progress and Future Directions. New Economic Windows. Springer, Cham. https://doi.org/10.1007/978-3-319-47705-3_15

Download citation

Publish with us

Policies and ethics