Skip to main content

Functional Plasticity

  • Chapter
  • First Online:
Darwinian Biolinguistics

Part of the book series: Perspectives in Pragmatics, Philosophy & Psychology ((PEPRPHPS,volume 12))

  • 421 Accesses

Abstract

In this chapter, the authors discuss both the physiological structures of brain plasticity and the pathological structures that reveal unknown aspects of brain plasticity. In particular, they consider the ontogenetic development of neurocerebral processes by detecting the relationship between genetic constraints and the possible variables related to developmental processes. The relationship between physiology and pathology, synesthetic integration and the neotenic nature of the human brain, which should foster more opportunities for functional plasticity, is emphasized

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bufill, E., Agustì, J., & Blesa, R. (2011). Human neoteny revisited: The case of synaptic plasticity. American Journal of Human Biology, 23, 729–739.

    Article  Google Scholar 

  • Condé, F., Lund, J. S., & Lewis, D. A. (1996). The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. Developmental brain research, 96(1), 261–276.

    Article  Google Scholar 

  • Edelman, G. M. (1987). Neural Darwinism. The theory of neural group selection. New York: Basic Books.

    Google Scholar 

  • Flore, G., Di Ruberto, G., Parisot, J., Sannino, S., Russo, F., Illingworth, E. A., Studer, M. & De Leonibus, E. (2016). Gradient COUP-TFI expression is required for functional organization of the hippocampal septo-temporal longitudinal axis. Cerebral Cortex, bhv336.

    Google Scholar 

  • Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., et al. (2013). Emergence of individuality in genetically identical mice. Science, 340(6133), 756–759.

    Article  Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture: Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London B: Biological Sciences, 198(1130), 1–59.

    Article  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (2005). Brain and visual perception: The story of a 25-year collaboration. New York: Oxford University Press.

    Google Scholar 

  • Kandel, E. R., Schwartz, J. H., & Jessel, T. M. (2006). Neuroscience – Principles of neural science. Tokyo: McGraw-Hill.

    Google Scholar 

  • Kral, A., & Sharma, A. (2012). Developmental neuroplasticity after cochlear implantation. Trends in neurosciences, 35(2), 111–122.

    Article  Google Scholar 

  • Maffei, A., Lambo, M. E., & Turrigiano, G. G. (2010). Critical period for inhibitory plasticity in RodentBinocular V1. The Journal of Neuroscience, 30(9), 3304–3309.

    Article  Google Scholar 

  • Mallamaci, A., Muzio, L., Chan, C. H., Parnavelas, J., & Boncinelli, E. (2000). Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice. Nature neuroscience, 3(7), 679–686.

    Article  Google Scholar 

  • Marcus, G. F. (2004). The birth of the mind: How a tiny number of genes creates the complexities of human thought. New York: Basic Books.

    Google Scholar 

  • Merabet, L. B., & Pascual-Leone, A. (2010). Neural reorganization following sensory loss: The opportunity of change. Nature Reviews Neuroscience, 11(1), 44–52.

    Article  Google Scholar 

  • Merzenich, M. M. (2013). Soft-Wired. San Francisco: Parnassus Publishing.

    Google Scholar 

  • Merzenich, M., Nahum, M., & van Vleet, T. (2013). Changing brains: Applying brain plasticity to advance and recover human ability (Vol. 207). Amsterdam: Elsevier.

    Google Scholar 

  • Mundkur, T. (2006). Successes and challenges of promoting conservation of migratory waterbirds and wetlands in the Asia–Pacific region: nine years of a regional strategy. Waterbirds around the world. Edinburgh: The Stationery Office, 81-87.

    Google Scholar 

  • Petanjek, Z., JudaÅ¡, M., Å imić, G., RaÅ¡in, M. R., Uylings, H. B., Rakic, P., & Kostović, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences, 108(32), 13281–13286.

    Article  Google Scholar 

  • Pinel, J. (2006). Biopsychology (VI ed.). Boston: Pearson.

    Google Scholar 

  • Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. The Journal of Neuroscience, 26(18), 4970–4982.

    Article  Google Scholar 

  • Ramachandran, V. S., & Rogers-Ramachandran, D. (1996). Denial of disabilities in anosognosia. Nature, 379, 815–818.

    Article  Google Scholar 

  • Ramachandran, V. S., Rogers-Ramachandran, D., & Cobb, S. (1995). Touching the phantom limb. Nature, 377(6549), 489–490.

    Article  Google Scholar 

  • Rosenzweig, M. R., & Bennett, E. L. (1977). Effects of environmental enrichment or impoverishment on learning and on brain values in rodents. InGenetics, environment and intelligence (pp. 163–196). Amsterdam: Elsevier.

    Google Scholar 

  • Squire, L. R., & Schacter, D. L. (2002). Neuropsychology of memory. New York: Guilford Press.

    Google Scholar 

  • Sweatt, J. D. (2013). The emerging field of neuroepigenetics. Neuron, 80(3), 624–632.

    Article  Google Scholar 

  • Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress Brain Research, 207, 3–34.

    Article  Google Scholar 

  • Tallinen, T., Chung, J. Y., Rousseau, F., Girard, N., Lefèvre, J., & Mahadevan, L. (2016). On the growth and form of cortical convolutions. Nature Physics, 12, 588–593.

    Article  Google Scholar 

  • Vallee, R. B., & Ts, J.-W. (2006). The cellular roles of the lissencephaly gene LIS1, and what they tell us aboutbrain development. Genes and Development, 20, 1384–1393.

    Article  Google Scholar 

  • Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Ward, L. M. (2001). Human neural plasticity. Trends in Cognitive Sciences, 5(8), 325–327.

    Article  Google Scholar 

  • Woolsey, T. A., & Wann, J. R. (1976). Areal changes in mouse cortical barrels following vibrissal damage at different postnatal ages. Journal of Comparative Neurology, 170(1), 53–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Pennisi, A., Falzone, A. (2016). Functional Plasticity. In: Darwinian Biolinguistics . Perspectives in Pragmatics, Philosophy & Psychology, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-47688-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47688-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47686-5

  • Online ISBN: 978-3-319-47688-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics