Skip to main content

Collection and Preparation of Clinical Samples for Metabolomics

Part of the Advances in Experimental Medicine and Biology book series (PMISB,volume 965)

Abstract

A wide range of biofluids (urine, serum, plasma, saliva, etc.) as well as cellular and tissue samples can be collected and investigated in clinical metabolomic studies. The choice of sample is dependent on the clinical question being investigated with biofluids typically studied to identify biomarkers, whereas tissues and primary/immortalised cells are typically studied to investigate mechanisms associated with pathophysiological processes. Methods applied to collect samples, quench metabolism and extract samples differ between sample types from simple collect, dilute and analyse methods for urine to complex washing, quenching and biphasic extraction methods for tissues. The range of sample collection and extraction methods are discussed with sample-specific considerations highlighted. Finally, methods for imaging of cells and tissues and for in vivo metabolomic analysis will also be introduced.

Keywords

  • Serum
  • Plasma
  • Urine
  • Human cells
  • Human tissues
  • Metabolic quenching
  • Extraction
  • Imaging

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-47656-8_2
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-47656-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3

Abbreviations

ATCC:

American Type Culture Centre

BMI:

Body mass index

BSTFA:

N,O-Bis(trimethylsilyl)trifluoroacetamide

CHO:

Chinese hamster ovary

CSF:

Cerebrospinal fluid

DESI-MS:

Desorption electrospray ionisation-mass spectrometry

DNA:

Deoxyribonucleic acid

EDTA:

Ethylenediaminetetraacetic acid

ESI:

Electrospray ionisation

GC-MS:

Gas chromatography-mass spectrometry

HILIC:

Hydrophilic interaction chromatography

HS-SPME:

Headspace solid-phase microextraction

IPA:

Isopropyl alcohol

LC:

Liquid chromatography

LC-MS:

Liquid chromatography-mass spectrometry

LLE:

Liquid-liquid extraction

MALDI-MS:

Matrix-assisted laser desorption/ionisation and mass spectrometry

MSTFA:

N-Methyl-N-(trimethylsilyl) trifluoroacetamide

MTBE:

Methyl tert-butyl ether

NMR:

Nuclear magnetic resonance

PBS:

Phosphate-buffered saline

RNA:

Ribonucleic acid

SIMS:

Secondary ion mass spectrometry

SOP:

Standard operating procedure

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

TCA:

Tricarboxylic acid

References

  1. Castro C, Briggs W, Paschos GK, FitzGerald GA, Griffin JL. A metabolomic study of adipose tissue in mice with a disruption of the circadian system. Mol Biosyst. 2015;11(7):1897–906.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  2. Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK. Global metabolic profiling procedures for urine using UPLC–MS. Nat Protoc. 2010;5(6):1005–18.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Mamas M, Dunn WB, Neyses L, Goodacre R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxicol. 2011;85(1):5–17.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol. 2008;48:653–83.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Favé G, Beckmann ME, Draper JH, Mathers JC. Measurement of dietary exposure: a challenging problem which may be overcome thanks to metabolomics? Genes Nutr. 2009;4(2):135–41.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  6. Johnson CH, Patterson AD, Idle JR, Gonzalez FJ. Xenobiotic metabolomics: major impact on the metabolome. Annu Rev Pharmacol Toxicol. 2012;52:37–56.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT. The human urine metabolome. PLoS One. 2013;8(9):e73076.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  8. Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, Saude EJ, Lix B, Adamko DJ, Shah S, Greiner R. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal Chem. 2007;79(18):6995–7004.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Giskeødegård GF, Davies SK, Revell VL, Keun H, Skene DJ. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci Rep. 2015;5:14843.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  10. Fernández-Peralbo MA, de Castro ML. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. Trends Anal Chem. 2012;41:75–85.

    CrossRef  CAS  Google Scholar 

  11. Adamko D, Rowe BH, Marrie T, Sykes BD. Variation of metabolites in normal human urine. Metabolomics. 2007;3(4):439–51.

    CrossRef  CAS  Google Scholar 

  12. Chan EC, Pasikanti KK, Nicholson JK. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat Protoc. 2011;6(10):1483–99.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Gika HG, Theodoridis GA, Wilson ID. Liquid chromatography and ultra-performance liquid chromatography–mass spectrometry fingerprinting of human urine: sample stability under different handling and storage conditions for metabonomics studies. J Chromatogr A. 2008;1189(1):314–22.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Álvarez-Sánchez B, Priego-Capote F, de Castro ML. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Trends Anal Chem. 2010;29(2):111–9.

    CrossRef  CAS  Google Scholar 

  15. Pasikanti KK, Ho PC, Chan EC. Development and validation of a gas chromatography/mass spectrometry metabonomic platform for the global profiling of urinary metabolites. Rapid Commun Mass Spectrom. 2008;22(19):2984–92.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Sykes BD. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics. 2007;3(1):19–27.

    CrossRef  CAS  Google Scholar 

  17. Gika HG, Theodoridis GA, Wingate JE, Wilson ID. Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J Proteome Res. 2007;6(8):3291–303.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 2009;5(4):435–58.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Emwas AH, Luchinat C, Turano P, Tenori L, Roy R, Salek RM, Ryan D, Merzaban JS, Kaddurah-Daouk R, Zeri AC, Gowda GN. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. 2015;11(4):872–94.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Snyder ML, Lichstein HC. Sodium azide as an inhibiting substance for gram-negative bacteria. J Infect Dis. 1940;67(2):113–5.

    CAS  CrossRef  Google Scholar 

  21. Gika HG, Theodoridis GA, Plumb RS, Wilson ID. Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal. 2014;87:12–25.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Theodoridis GA, Gika HG, Want EJ, Wilson ID. Liquid chromatography–mass spectrometry based global metabolite profiling: a review. Anal Chim Acta. 2012;711:7–16.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Chen Y, Xu J, Zhang R, Abliz Z. Methods used to increase the comprehensive coverage of urinary and plasma metabolomes by MS. Bioanalysis. 2016;8(9):981–97.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Waybright TJ, Van QN, Muschik GM, Conrads TP, Veenstra TD, Issaq HJ. LC‐MS in metabonomics: optimization of experimental conditions for the analysis of metabolites in human urine. J Liq Chromatogr Relat Technol. 2006;29(17):2475–97.

    CAS  CrossRef  Google Scholar 

  25. Álvarez-Sánchez B, Priego-Capote F, de Castro ML. Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal Chem. 2010;29(2):120–7.

    CrossRef  CAS  Google Scholar 

  26. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry‐based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Issaq HJ, Nativ O, Waybright T, Luke B, Veenstra TD, Issaq EJ, Kravstov A, Mullerad M. Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. J Urol. 2008;179(6):2422–6.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Chetwynd AJ, Abdul-Sada A, Hill EM. Solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionization mass spectrometry for improved global urine metabolomics. Anal Chem. 2015;87(2):1158–65.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Michopoulos F, Gika H, Palachanis D, Theodoridis G, Wilson ID. Solid phase extraction methodology for UPLC‐MS based metabolic profiling of urine samples. Electrophoresis. 2015;36(18):2170–8.

    CAS  CrossRef  Google Scholar 

  30. Tulipani S, Mora-Cubillos X, Jáuregui O, Llorach R, García-Fuentes E, Tinahones FJ, Andres-Lacueva C. New and vintage solutions to enhance the plasma metabolome coverage by LC-ESI-MS untargeted metabolomics: the not-so-simple process of method performance evaluation. Anal Chem. 2015;87(5):2639–47.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Dunn WB, Broadhurst D, Ellis DI, Brown M, Halsall A, O’Hagan S, Spasic I, Tseng A, Kell DB. A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols. Int J Epidemioly. 2008;37 Suppl 1:i23–30.

    CrossRef  Google Scholar 

  32. Woo HM, Kim KM, Choi MH, Jung BH, Lee J, Kong G, Nam SJ, Kim S, Bai SW, Chung BC. Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin Chim Acta. 2009;400(1):63–9.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Silva C, Cavaco C, Perestrelo R, Pereira J, Câmara JS. Microextraction by packed sorbent (meps) and solid-phase microextraction (spme) as sample preparation procedures for the metabolomic profiling of urine. Metabolites. 2014;4(1):71–97.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  34. Silva CL, Passos M, Câmara JS. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers—a powerful strategy for breast cancer diagnosis. Talanta. 2012;89:360–8.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Bojko B, Reyes-Garcés N, Bessonneau V, Goryński K, Mousavi F, Silva EA, Pawliszyn J. Solid-phase microextraction in metabolomics. TrAC Trends in Anal Chem. 2014;61:168–80.

    CAS  CrossRef  Google Scholar 

  36. Michell AW, Mosedale D, Grainger DJ, Barker RA. Metabolomic analysis of urine and serum in Parkinson’s disease. Metabolomics. 2008;4(3):191–201.

    CAS  CrossRef  Google Scholar 

  37. Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem. 2007;363(2):185–95.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Chen Y, Shen G, Zhang R, He J, Zhang Y, Xu J, Yang W, Chen X, Song Y, Abliz Z. Combination of injection volume calibration by creatinine and ms signals’ normalization to overcome urine variability in LC-MS-based metabolomics studies. Anal Chem. 2013;85(16):7659–65.

    CAS  PubMed  CrossRef  Google Scholar 

  39. Veselkov KA, Vingara LK, Masson P, Robinette SL, Want E, Li JV, Barton RH, Boursier-Neyret C, Walther B, Ebbels TM, Pelczer I. Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal Chem. 2011;83(15):5864–72.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Chetwynd AJ, Abdul-Sada A, Holt SG, Hill EM. Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses. J Chromatogr A. 2016;1431:103–10.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Edmands WM, Ferrari P, Scalbert A. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine. Anal Chem. 2014;86(21):10925–31.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Wedge DC, Allwood JW, Dunn W, Vaughan AA, Simpson K, Brown M, Priest L, Blackhall FH, Whetton AD, Dive C, Goodacre R. Is serum or plasma more appropriate for intersubject comparisons in metabolomic studies? An assessment in patients with small-cell lung cancer. Anal Chem. 2011;83(17):6689–97.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Dettmer K, Almstetter MF, Appel IJ, Nürnberger N, Schlamberger G, Gronwald W, Meyer HH, Oefner PJ. Comparison of serum versus plasma collection in gas chromatography–Mass spectrometry‐based metabolomics. Electrophoresis. 2010;31(14):2365–73.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Yu Z, Kastenmüller G, He Y, Belcredi P, Möller G, Prehn C, Mendes J, Wahl S, Roemisch-Margl W, Ceglarek U, Polonikov A. Differences between human plasma and serum metabolite profiles. PLoS One. 2011;6(7):e21230.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  45. Tenori L, Oakman C, Morris PG, Gralka E, Turner N, Cappadona S, Fornier M, Hudis C, Norton L, Luchinat C, Di Leo A. Serum metabolomic profiles evaluated after surgery may identify patients with oestrogen receptor negative early breast cancer at increased risk of disease recurrence. Results from a retrospective study. Mol Oncol. 2015;9(1):128–39.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Drogan D, Dunn WB, Lin W, Buijsse B, Schulze MB, Langenberg C, Brown M, Floegel A, Dietrich S, Rolandsson O, Wedge DC. Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem. 2015;61(3):487–97.

    CAS  PubMed  CrossRef  Google Scholar 

  47. Zhang W, Sun G, Likhodii S, Liu M, Aref-Eshghi E, Harper PE, Martin G, Furey A, Green R, Randell E, Rahman P. Metabolomic analysis of human plasma reveals that arginine is depleted in knee osteoarthritis patients. Osteoarthritis Cartilage. 2016;24(5):827–34.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Cheng ML, Wang CH, Shiao MS, Liu MH, Huang YY, Huang CY, Mao CT, Lin JF, Ho HY, Yang NI. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J Am College Cardiol. 2015;65(15):1509–20.

    CAS  CrossRef  Google Scholar 

  49. Vitamin D Blood Spot Assay, Pathology Department, City Hospital, Birmingham. [Cited 8 Aug 2016]. Available from: http://www.cityassays.org.uk/Vitamin%20D%20Blood%20Spot.html.

  50. Hirayama A, Sugimoto M, Suzuki A, Hatakeyama Y, Enomoto A, Harada S, Soga T, Tomita M, Takebayashi T. Effects of processing and storage conditions on charged metabolomic profiles in blood. Electrophoresis. 2015;36(18):2148–55.

    CAS  CrossRef  Google Scholar 

  51. Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407(17):4879–92.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  52. BD Vacutainer Venous Blood Collection, Tube Guide. [Cited 11 Aug 2016]. Available from: https://www.bd.com/vacutainer/pdfs/plus_plastic_tubes_wallchart_tubeguide_VS5229.pdf.

  53. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–83.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem. 2009;81(9):3285–96.

    CAS  PubMed  CrossRef  Google Scholar 

  55. Contrepois K, Jiang L, Snyder M. optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (hilic) and reverse-phase liquid chromatography (RPLC)–Mass spectrometry. Mol Cell Proteomics. 2015;14(6):1684–95.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  56. Reis A, Rudnitskaya A, Blackburn GJ, Fauzi NM, Pitt AR, Spickett CM. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res. 2013;54(7):1812–24.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  57. Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem. 2005;77(24):8086–94.

    PubMed  CrossRef  CAS  Google Scholar 

  58. Patterson RE, Ducrocq AJ, McDougall DJ, Garrett TJ, Yost RA. Comparison of blood plasma sample preparation methods for combined LC–MS lipidomics and metabolomics. J Chromatogr B. 2015;1002:260–6.

    CAS  CrossRef  Google Scholar 

  59. Boernsen KO, Gatzek S, Imbert G. Controlled protein precipitation in combination with chip-based nanospray infusion mass spectrometry. An approach for metabolomics profiling of plasma. Anal Chem. 2005;77(22):7255–64.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Want EJ, Smith CA, Qin C, Van Horne KC, Siuzdak G. Phospholipid capture combined with non-linear chromatographic correction for improved serum metabolite profiling. Metabolomics. 2006;2(3):145–54.

    CAS  CrossRef  Google Scholar 

  61. Michopoulos F, Lai L, Gika H, Theodoridis G, Wilson I. UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. J Proteome Res. 2009;8(4):2114–21.

    CAS  PubMed  CrossRef  Google Scholar 

  62. David A, Abdul-Sada A, Lange A, Tyler CR, Hill EM. A new approach for plasma (xeno) metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. J Chromatogr A. 2014;1365:72–85.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Álvarez-Sánchez B, Priego-Capote F, de Castro ML. Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography–time of flight/mass spectrometry. J Chromatogr A. 2012;1248:178–81.

    PubMed  CrossRef  CAS  Google Scholar 

  64. Zhang A, Sun H, Wang X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol. 2012;168(6):1718–27.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Takeda I, Stretch C, Barnaby P, Bhatnager K, Rankin K, Fu H, Weljie A, Jha N, Slupsky C. Understanding the human salivary metabolome. NMR Biomed. 2009;22(6):577–84.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6(1):78–95.

    CAS  PubMed  CrossRef  Google Scholar 

  67. Dame ZT, Aziat F, Mandal R, Krishnamurthy R, Bouatra S, Borzouie S, Guo AC, Sajed T, Deng L, Lin H, Liu P. The human saliva metabolome. Metabolomics. 2015;11(6):1864–83.

    CAS  CrossRef  Google Scholar 

  68. Wang Q, Gao P, Wang X, Duan Y. The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Sci Rep. 2014;4:6802.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  69. Santone C, Dinallo V, Paci M, D’Ottavio S, Barbato G, Bernardini S. Saliva metabolomics by NMR for the evaluation of sport performance. J Pharm Biomed Anal. 2014;88:441–6.

    CAS  PubMed  CrossRef  Google Scholar 

  70. Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr. 2006;84(3):531–9.

    CAS  PubMed  Google Scholar 

  71. Bessonneau V, Bojko B, Pawliszyn J. Analysis of human saliva metabolome by direct immersion solid-phase microextraction LC and benchtop orbitrap MS. Bioanalysis. 2013;5(7):783–92.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, Sawhney S. The human cerebrospinal fluid metabolome. J Chromatogr B. 2008;871(2):164–73.

    CAS  CrossRef  Google Scholar 

  73. Zhang A, Sun H, Wang P, Han Y, Wang X. Recent and potential developments of biofluid analyses in metabolomics. J Proteomics. 2012;75(4):1079–88.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Maillet S, Vion-Dury J, Confort-Gouny S, Nicoli F, Lutz NW, Viout P, Cozzone PJ. Experimental protocol for clinical analysis of cerebrospinal fluid by high resolution proton magnetic resonance spectroscopy. Brain Res Protoc. 1998;3(2):123–34.

    CAS  CrossRef  Google Scholar 

  75. Mandal R, Guo AC, Chaudhary KK, Liu P, Yallou FS, Dong E, Aziat F, Wishart DS. Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med. 2012;4(4):1.

    CAS  CrossRef  Google Scholar 

  76. Mena-Bravo A, de Castro ML. Sweat: a sample with limited present applications and promising future in metabolomics. J Pharm Biomed Anal. 2014;90:139–47.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Calderón-Santiago M, Priego-Capote F, Jurado-Gámez B, de Castro ML. Optimization study for metabolomics analysis of human sweat by liquid chromatography–tandem mass spectrometry in high resolution mode. J Chromatogr A. 2014;1333:70–8.

    PubMed  CrossRef  CAS  Google Scholar 

  78. Kutyshenko VP, Molchanov M, Beskaravayny P, Uversky VN, Timchenko MA. Analyzing and mapping sweat metabolomics by high-resolution NMR spectroscopy. Plos One. 2011;6(12):e28824.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  79. Smilowitz JT, O’Sullivan A, Barile D, German JB, Lönnerdal B, Slupsky CM. The human milk metabolome reveals diverse oligosaccharide profiles. J Nutr. 2013;143(11):1709–18.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  80. Praticò G, Capuani G, Tomassini A, Baldassarre ME, Delfini M, Miccheli A. Exploring human breast milk composition by NMR-based metabolomics. Nat Prod Res. 2014;28(2):95–101.

    PubMed  CrossRef  CAS  Google Scholar 

  81. Villaseñor A, Garcia-Perez I, Garcia A, Posma JM, Fernández-López M, Nicholas AJ, Modi N, Holmes E, Barbas C. Breast milk metabolome characterization in a single-phase extraction, multiplatform analytical approach. Anal Chem. 2014;86(16):8245–52.

    PubMed  CrossRef  CAS  Google Scholar 

  82. Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC. Metabolic phenotyping in clinical and surgical environments. Nature. 2012;491(7424):384–92.

    CAS  PubMed  CrossRef  Google Scholar 

  83. Čuperlović-Culf M, Barnett DA, Culf AS, Chute I. Cell culture metabolomics: applications and future directions. Drug Discov Today. 2010;15(15):610–21.

    PubMed  CrossRef  CAS  Google Scholar 

  84. Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena E, Vaughan AA, Halsall A, Harding N, Knowles JD, Francis-McIntyre S. Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics. 2015;11(1):9–26.

    CAS  PubMed  CrossRef  Google Scholar 

  85. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013;31(5):419–25.

    CAS  PubMed  CrossRef  Google Scholar 

  86. Halama A. Metabolomics in cell culture—a strategy to study crucial metabolic pathways in cancer development and the response to treatment. Arch Biochem Biophys. 2014;564:100–9.

    CAS  PubMed  CrossRef  Google Scholar 

  87. Zhang A, Sun H, Xu H, Qiu S, Wang X. Cell metabolomics. Omics J Integrative Biol. 2013;17(10):495–501.

    CAS  CrossRef  Google Scholar 

  88. Kim DH, Achcar F, Breitling R, Burgess KE, Barrett MP. LC–MS-based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes. Metabolomics. 2015;11(6):1721–32.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  89. Mackay GM, Zheng L, van den Broek NJF, Gottlieb E. Analysis of cell metabolism using LC-MS and isotope tracers. In: Metallo CM, editor. Methods in enzymology. Metabolic analysis using stable isotopes. 1st ed. Academic Press; Waltham, USA 2015.

    Google Scholar 

  90. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discovery. 2011;10(9):671–84.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  92. Schaeffer WI. Usage of vertebrate, invertebrate and plant cell, tissue and organ culture terminology. In Vitro. 1984;20(1):19–24.

    CAS  PubMed  CrossRef  Google Scholar 

  93. León Z, García‐Cañaveras JC, Donato MT, Lahoz A. Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis. 2013;34(19):2762–75.

    PubMed  Google Scholar 

  94. Hounoum BM, Blasco H, Nadal-Desbarats L, Diémé B, Montigny F, Andres CR, Emond P, Mavel S. Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS. Anal Bioanal Chem. 2015;407(29):8861–72.

    CrossRef  CAS  Google Scholar 

  95. Vuckovic D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal Bioanal Chem. 2012;403(6):1523–48.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Paglia G, Hrafnsdóttir S, Magnúsdóttir M, Fleming RM, Thorlacius S, Palsson BØ, Thiele I. Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole–time of flight mass spectrometry (UPLC–Q–ToF-MS). Anal Bioanal Chem. 2012;402(3):1183–98.

    CAS  PubMed  CrossRef  Google Scholar 

  97. Mercier P, Lewis MJ, Chang D, Baker D, Wishart DS. Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR. 2011;49(3-4):307–23.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Dietmair S, Timmins NE, Gray PP, Nielsen LK, Krömer JO. Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem. 2010;404(2):155–64.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Bordag N, Janakiraman V, Nachtigall J, Maldonado SG, Bethan B, Laine JP, Fux E. Fast filtration of bacterial or mammalian suspension cell cultures for optimal metabolomics results. PLoS One. 2016;11(7):e0159389.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  100. Hounoum BM, Blasco H, Emond P, Mavel S. Liquid chromatography–high-resolution mass spectrometry-based cell metabolomics: experimental design, recommendations, and applications. Trends Anal Chem. 2016;75:118–28.

    CrossRef  CAS  Google Scholar 

  101. Sellick CA, Hansen R, Stephens GM, Goodacre R, Dickson AJ. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc. 2011;6(8):1241–9.

    CAS  PubMed  CrossRef  Google Scholar 

  102. Dietmair S, Hodson MP, Quek LE, Timmins NE, Chrysanthopoulos P, Jacob SS, Gray P, Nielsen LK. Metabolite profiling of CHO cells with different growth characteristics. Biotechnol Bioeng. 2012;109(6):1404–14.

    CAS  PubMed  CrossRef  Google Scholar 

  103. Han W, Li L. Matrix effect on chemical isotope labeling and its implication in metabolomic sample preparation for quantitative metabolomics. Metabolomics. 2015;11(6):1733–42.

    CAS  CrossRef  Google Scholar 

  104. Bi H, Krausz KW, Manna SK, Li F, Johnson CH, Gonzalez FJ. Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem. 2013;405(15):5279–89.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  105. Lorenz MA, Burant CF, Kennedy RT. Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Anal Chem. 2011;83(9):3406–14.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  106. Dettmer K, Nürnberger N, Kaspar H, Gruber MA, Almstetter MF, Oefner PJ. Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem. 2011;399(3):1127–39.

    CAS  PubMed  CrossRef  Google Scholar 

  107. Teng Q, Huang W, Collette TW, Ekman DR, Tan C. A direct cell quenching method for cell-culture based metabolomics. Metabolomics. 2009;5(2):199–208.

    CAS  CrossRef  Google Scholar 

  108. Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, Herrerías A, Batchelder EM, Plongthongkum N, Lutz M, Berggren WT. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012;22(1):168–77.

    CAS  PubMed  CrossRef  Google Scholar 

  109. Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2006;2(12):e132.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  110. Silva LP, Lorenzi PL, Purwaha P, Yong V, Hawke DH, Weinstein JN. Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines. Anal Chem. 2013;85(20):9536–42.

    CAS  PubMed  CrossRef  Google Scholar 

  111. Fazelzadeh P, Hangelbroek RW, Tieland M, de Groot LC, Verdijk LB, van Loon LJ, Smilde AK, Alves RD, Vervoort J, Müller M, van Duynhoven JP. The muscle metabolome differs between healthy and frail older adults. J Proteome Res. 2016;15(2):499–509.

    CAS  PubMed  CrossRef  Google Scholar 

  112. Mayr M, Yusuf S, Weir G, Chung YL, Mayr U, Yin X, Ladroue C, Madhu B, Roberts N, De Souza A, Fredericks S. Combined metabolomic and proteomic analysis of human atrial fibrillation. J Am College Cardiol. 2008;51(5):585–94.

    CAS  CrossRef  Google Scholar 

  113. Schönfels W, Patsenker E, Fahrner R, Itzel T, Hinrichsen H, Brosch M, Erhart W, Gruodyte A, Vollnberg B, Richter K, Landrock A. Metabolomic tissue signature in human non‐alcoholic fatty liver disease identifies protective candidate metabolites. Liver Int. 2015;35(1):207–14.

    CrossRef  CAS  Google Scholar 

  114. Rocha CM, Barros AS, Goodfellow BJ, Carreira IM, Gomes A, Sousa V, Bernardo J, Carvalho L, Gil AM, Duarte IF. NMR metabolomics of human lung tumours reveals distinct metabolic signatures for adenocarcinoma and squamous cell carcinoma. Carcinogenesis. 2015;36(1):68–75.

    CAS  PubMed  CrossRef  Google Scholar 

  115. Dunn WB, Brown M, Worton SA, Davies K, Jones RL, Kell DB, Heazell AE. The metabolome of human placental tissue: investigation of first trimester tissue and changes related to preeclampsia in late pregnancy. Metabolomics. 2012;8(4):579–97.

    CAS  CrossRef  Google Scholar 

  116. Anwar MA, Vorkas PA, Li JV, Shalhoub J, Want EJ, Davies AH, Holmes E. Optimization of metabolite extraction of human vein tissue for ultra performance liquid chromatography-mass spectrometry and nuclear magnetic resonance-based untargeted metabolic profiling. Analyst. 2015;140(22):7586–97.

    CAS  PubMed  CrossRef  Google Scholar 

  117. Randhawa M, Sangar V, Tucker-Samaras S, Southall M. Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway. PLoS One. 2014;9(3):e90367.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  118. Allwood JW, Winder CL, Dunn WB, Goodacre R. Considerations in sample preparation, collection, and extraction approaches applied in microbial, plant, and mammalian metabolic profiling. In: Lutz NW, Sweedler JV, Wevers RA, editors. Methodologies for metabolomics: experimental strategies and techniques. 1st ed. Cambridge: Cambridge University Press; 2013.

    Google Scholar 

  119. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N, Holmes E, Nicholson JK. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8(1):17–32.

    CAS  PubMed  CrossRef  Google Scholar 

  120. Brown DG, Rao S, Weir TL, O’Malia J, Bazan M, Brown RJ, Ryan EP. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016;4(1):1.

    CrossRef  Google Scholar 

  121. Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. 2012;8(1):133–42.

    CrossRef  CAS  Google Scholar 

  122. Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, Eyassu F. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  123. Vorkas PA, Isaac G, Anwar MA, Davies AH, Want EJ, Nicholson JK, Holmes E. Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: application to cardiovascular disease. Anal Chem. 2015;87(8):4184–93.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  124. Gehmlich K, Dodd MS, Allwood JW, Kelly M, Bellahcene M, Lad HV, Stockenhuber A, Hooper C, Ashrafian H, Redwood CS, Carrier L. Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy. Mol Bio Syst. 2015;11(2):564–73.

    CAS  Google Scholar 

  125. Chen S, Hoene M, Li J, Li Y, Zhao X, Häring HU, Schleicher ED, Weigert C, Xu G, Lehmann R. Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J Chromatogr A. 2013;1298:9–16.

    CAS  PubMed  CrossRef  Google Scholar 

  126. Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509.

    CAS  PubMed  Google Scholar 

  127. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  128. Wu H, Southam AD, Hines A, Viant MR. High-throughput tissue extraction protocol for NMR-and MS-based metabolomics. Anal Biochem. 2008;372(2):204–12.

    CAS  PubMed  CrossRef  Google Scholar 

  129. Rao S, Walters KB, Wilson L, Chen B, Bolisetty S, Graves D, Barnes S, Agarwal A, Kabarowski JH. Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. Am J Physiol Renal Physiol. 2016;310(10):F1136–47.

    CAS  PubMed  CrossRef  Google Scholar 

  130. Jarmusch AK, Pirro V, Baird Z, Hattab EM, Cohen-Gadol AA, Cooks RG. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc Natl Acad Sci U S A. 2016;113(6):1486–91.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  131. Park JW, Jeong H, Kang B, Kim SJ, Park SY, Kang S, Kim HK, Choi JS, Hwang D, Lee TG. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface. Sci Rep. 2015;5:5.

    Google Scholar 

  132. Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJ, van de Velde CJ, Weirich G, Erlmeier F. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc. 2016;11(8):1428–43.

    PubMed  CrossRef  Google Scholar 

  133. Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezső B, Damjanovich L, Darzi A, Nicholson JK. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Translational Med. 2013;5(194):194ra93.

    CrossRef  CAS  Google Scholar 

  134. Kinross JM, Muirhead L, Alexander J, Balog J, Guallar-Hoya C, Speller A, Golff O, Goldin R, Darzi A, Nicholson J, Takats Z. iKnife: rapid evaporative ionization mass spectrometry (REIMS) enables real-time chemical analysis of the mucosal lipidome for diagnostic and prognostic use in colorectal cancer. Cancer Res. 2016;76(14 Suppl):3977.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warwick B. Dunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chetwynd, A.J., Dunn, W.B., Rodriguez-Blanco, G. (2017). Collection and Preparation of Clinical Samples for Metabolomics. In: Sussulini, A. (eds) Metabolomics: From Fundamentals to Clinical Applications. Advances in Experimental Medicine and Biology(), vol 965. Springer, Cham. https://doi.org/10.1007/978-3-319-47656-8_2

Download citation