Castro C, Briggs W, Paschos GK, FitzGerald GA, Griffin JL. A metabolomic study of adipose tissue in mice with a disruption of the circadian system. Mol Biosyst. 2015;11(7):1897–906.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK. Global metabolic profiling procedures for urine using UPLC–MS. Nat Protoc. 2010;5(6):1005–18.
CAS
PubMed
CrossRef
Google Scholar
Mamas M, Dunn WB, Neyses L, Goodacre R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxicol. 2011;85(1):5–17.
CAS
PubMed
CrossRef
Google Scholar
Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol. 2008;48:653–83.
CAS
PubMed
CrossRef
Google Scholar
Favé G, Beckmann ME, Draper JH, Mathers JC. Measurement of dietary exposure: a challenging problem which may be overcome thanks to metabolomics? Genes Nutr. 2009;4(2):135–41.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Johnson CH, Patterson AD, Idle JR, Gonzalez FJ. Xenobiotic metabolomics: major impact on the metabolome. Annu Rev Pharmacol Toxicol. 2012;52:37–56.
CAS
PubMed
CrossRef
Google Scholar
Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT. The human urine metabolome. PLoS One. 2013;8(9):e73076.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, Saude EJ, Lix B, Adamko DJ, Shah S, Greiner R. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal Chem. 2007;79(18):6995–7004.
CAS
PubMed
CrossRef
Google Scholar
Giskeødegård GF, Davies SK, Revell VL, Keun H, Skene DJ. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation. Sci Rep. 2015;5:14843.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Fernández-Peralbo MA, de Castro ML. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. Trends Anal Chem. 2012;41:75–85.
CrossRef
CAS
Google Scholar
Adamko D, Rowe BH, Marrie T, Sykes BD. Variation of metabolites in normal human urine. Metabolomics. 2007;3(4):439–51.
CrossRef
CAS
Google Scholar
Chan EC, Pasikanti KK, Nicholson JK. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat Protoc. 2011;6(10):1483–99.
CAS
PubMed
CrossRef
Google Scholar
Gika HG, Theodoridis GA, Wilson ID. Liquid chromatography and ultra-performance liquid chromatography–mass spectrometry fingerprinting of human urine: sample stability under different handling and storage conditions for metabonomics studies. J Chromatogr A. 2008;1189(1):314–22.
CAS
PubMed
CrossRef
Google Scholar
Álvarez-Sánchez B, Priego-Capote F, de Castro ML. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Trends Anal Chem. 2010;29(2):111–9.
CrossRef
CAS
Google Scholar
Pasikanti KK, Ho PC, Chan EC. Development and validation of a gas chromatography/mass spectrometry metabonomic platform for the global profiling of urinary metabolites. Rapid Commun Mass Spectrom. 2008;22(19):2984–92.
CAS
PubMed
CrossRef
Google Scholar
Sykes BD. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics. 2007;3(1):19–27.
CrossRef
CAS
Google Scholar
Gika HG, Theodoridis GA, Wingate JE, Wilson ID. Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J Proteome Res. 2007;6(8):3291–303.
CAS
PubMed
CrossRef
Google Scholar
Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 2009;5(4):435–58.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Emwas AH, Luchinat C, Turano P, Tenori L, Roy R, Salek RM, Ryan D, Merzaban JS, Kaddurah-Daouk R, Zeri AC, Gowda GN. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. 2015;11(4):872–94.
CAS
PubMed
CrossRef
Google Scholar
Snyder ML, Lichstein HC. Sodium azide as an inhibiting substance for gram-negative bacteria. J Infect Dis. 1940;67(2):113–5.
CAS
CrossRef
Google Scholar
Gika HG, Theodoridis GA, Plumb RS, Wilson ID. Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal. 2014;87:12–25.
CAS
PubMed
CrossRef
Google Scholar
Theodoridis GA, Gika HG, Want EJ, Wilson ID. Liquid chromatography–mass spectrometry based global metabolite profiling: a review. Anal Chim Acta. 2012;711:7–16.
CAS
PubMed
CrossRef
Google Scholar
Chen Y, Xu J, Zhang R, Abliz Z. Methods used to increase the comprehensive coverage of urinary and plasma metabolomes by MS. Bioanalysis. 2016;8(9):981–97.
CAS
PubMed
CrossRef
Google Scholar
Waybright TJ, Van QN, Muschik GM, Conrads TP, Veenstra TD, Issaq HJ. LC‐MS in metabonomics: optimization of experimental conditions for the analysis of metabolites in human urine. J Liq Chromatogr Relat Technol. 2006;29(17):2475–97.
CAS
CrossRef
Google Scholar
Álvarez-Sánchez B, Priego-Capote F, de Castro ML. Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal Chem. 2010;29(2):120–7.
CrossRef
CAS
Google Scholar
Dettmer K, Aronov PA, Hammock BD. Mass spectrometry‐based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Issaq HJ, Nativ O, Waybright T, Luke B, Veenstra TD, Issaq EJ, Kravstov A, Mullerad M. Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. J Urol. 2008;179(6):2422–6.
CAS
PubMed
CrossRef
Google Scholar
Chetwynd AJ, Abdul-Sada A, Hill EM. Solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionization mass spectrometry for improved global urine metabolomics. Anal Chem. 2015;87(2):1158–65.
CAS
PubMed
CrossRef
Google Scholar
Michopoulos F, Gika H, Palachanis D, Theodoridis G, Wilson ID. Solid phase extraction methodology for UPLC‐MS based metabolic profiling of urine samples. Electrophoresis. 2015;36(18):2170–8.
CAS
CrossRef
Google Scholar
Tulipani S, Mora-Cubillos X, Jáuregui O, Llorach R, García-Fuentes E, Tinahones FJ, Andres-Lacueva C. New and vintage solutions to enhance the plasma metabolome coverage by LC-ESI-MS untargeted metabolomics: the not-so-simple process of method performance evaluation. Anal Chem. 2015;87(5):2639–47.
CAS
PubMed
CrossRef
Google Scholar
Dunn WB, Broadhurst D, Ellis DI, Brown M, Halsall A, O’Hagan S, Spasic I, Tseng A, Kell DB. A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols. Int J Epidemioly. 2008;37 Suppl 1:i23–30.
CrossRef
Google Scholar
Woo HM, Kim KM, Choi MH, Jung BH, Lee J, Kong G, Nam SJ, Kim S, Bai SW, Chung BC. Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin Chim Acta. 2009;400(1):63–9.
CAS
PubMed
CrossRef
Google Scholar
Silva C, Cavaco C, Perestrelo R, Pereira J, Câmara JS. Microextraction by packed sorbent (meps) and solid-phase microextraction (spme) as sample preparation procedures for the metabolomic profiling of urine. Metabolites. 2014;4(1):71–97.
PubMed
PubMed Central
CrossRef
Google Scholar
Silva CL, Passos M, Câmara JS. Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers—a powerful strategy for breast cancer diagnosis. Talanta. 2012;89:360–8.
CAS
PubMed
CrossRef
Google Scholar
Bojko B, Reyes-Garcés N, Bessonneau V, Goryński K, Mousavi F, Silva EA, Pawliszyn J. Solid-phase microextraction in metabolomics. TrAC Trends in Anal Chem. 2014;61:168–80.
CAS
CrossRef
Google Scholar
Michell AW, Mosedale D, Grainger DJ, Barker RA. Metabolomic analysis of urine and serum in Parkinson’s disease. Metabolomics. 2008;4(3):191–201.
CAS
CrossRef
Google Scholar
Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem. 2007;363(2):185–95.
CAS
PubMed
CrossRef
Google Scholar
Chen Y, Shen G, Zhang R, He J, Zhang Y, Xu J, Yang W, Chen X, Song Y, Abliz Z. Combination of injection volume calibration by creatinine and ms signals’ normalization to overcome urine variability in LC-MS-based metabolomics studies. Anal Chem. 2013;85(16):7659–65.
CAS
PubMed
CrossRef
Google Scholar
Veselkov KA, Vingara LK, Masson P, Robinette SL, Want E, Li JV, Barton RH, Boursier-Neyret C, Walther B, Ebbels TM, Pelczer I. Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Anal Chem. 2011;83(15):5864–72.
CAS
PubMed
CrossRef
Google Scholar
Chetwynd AJ, Abdul-Sada A, Holt SG, Hill EM. Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses. J Chromatogr A. 2016;1431:103–10.
CAS
PubMed
CrossRef
Google Scholar
Edmands WM, Ferrari P, Scalbert A. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine. Anal Chem. 2014;86(21):10925–31.
CAS
PubMed
CrossRef
Google Scholar
Wedge DC, Allwood JW, Dunn W, Vaughan AA, Simpson K, Brown M, Priest L, Blackhall FH, Whetton AD, Dive C, Goodacre R. Is serum or plasma more appropriate for intersubject comparisons in metabolomic studies? An assessment in patients with small-cell lung cancer. Anal Chem. 2011;83(17):6689–97.
CAS
PubMed
CrossRef
Google Scholar
Dettmer K, Almstetter MF, Appel IJ, Nürnberger N, Schlamberger G, Gronwald W, Meyer HH, Oefner PJ. Comparison of serum versus plasma collection in gas chromatography–Mass spectrometry‐based metabolomics. Electrophoresis. 2010;31(14):2365–73.
CAS
PubMed
CrossRef
Google Scholar
Yu Z, Kastenmüller G, He Y, Belcredi P, Möller G, Prehn C, Mendes J, Wahl S, Roemisch-Margl W, Ceglarek U, Polonikov A. Differences between human plasma and serum metabolite profiles. PLoS One. 2011;6(7):e21230.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Tenori L, Oakman C, Morris PG, Gralka E, Turner N, Cappadona S, Fornier M, Hudis C, Norton L, Luchinat C, Di Leo A. Serum metabolomic profiles evaluated after surgery may identify patients with oestrogen receptor negative early breast cancer at increased risk of disease recurrence. Results from a retrospective study. Mol Oncol. 2015;9(1):128–39.
CAS
PubMed
CrossRef
Google Scholar
Drogan D, Dunn WB, Lin W, Buijsse B, Schulze MB, Langenberg C, Brown M, Floegel A, Dietrich S, Rolandsson O, Wedge DC. Untargeted metabolic profiling identifies altered serum metabolites of type 2 diabetes mellitus in a prospective, nested case control study. Clin Chem. 2015;61(3):487–97.
CAS
PubMed
CrossRef
Google Scholar
Zhang W, Sun G, Likhodii S, Liu M, Aref-Eshghi E, Harper PE, Martin G, Furey A, Green R, Randell E, Rahman P. Metabolomic analysis of human plasma reveals that arginine is depleted in knee osteoarthritis patients. Osteoarthritis Cartilage. 2016;24(5):827–34.
CAS
PubMed
CrossRef
Google Scholar
Cheng ML, Wang CH, Shiao MS, Liu MH, Huang YY, Huang CY, Mao CT, Lin JF, Ho HY, Yang NI. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J Am College Cardiol. 2015;65(15):1509–20.
CAS
CrossRef
Google Scholar
Vitamin D Blood Spot Assay, Pathology Department, City Hospital, Birmingham. [Cited 8 Aug 2016]. Available from: http://www.cityassays.org.uk/Vitamin%20D%20Blood%20Spot.html.
Hirayama A, Sugimoto M, Suzuki A, Hatakeyama Y, Enomoto A, Harada S, Soga T, Tomita M, Takebayashi T. Effects of processing and storage conditions on charged metabolomic profiles in blood. Electrophoresis. 2015;36(18):2148–55.
CAS
CrossRef
Google Scholar
Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407(17):4879–92.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
BD Vacutainer Venous Blood Collection, Tube Guide. [Cited 11 Aug 2016]. Available from: https://www.bd.com/vacutainer/pdfs/plus_plastic_tubes_wallchart_tubeguide_VS5229.pdf.
Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–83.
CAS
PubMed
CrossRef
Google Scholar
Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem. 2009;81(9):3285–96.
CAS
PubMed
CrossRef
Google Scholar
Contrepois K, Jiang L, Snyder M. optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (hilic) and reverse-phase liquid chromatography (RPLC)–Mass spectrometry. Mol Cell Proteomics. 2015;14(6):1684–95.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Reis A, Rudnitskaya A, Blackburn GJ, Fauzi NM, Pitt AR, Spickett CM. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res. 2013;54(7):1812–24.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem. 2005;77(24):8086–94.
PubMed
CrossRef
CAS
Google Scholar
Patterson RE, Ducrocq AJ, McDougall DJ, Garrett TJ, Yost RA. Comparison of blood plasma sample preparation methods for combined LC–MS lipidomics and metabolomics. J Chromatogr B. 2015;1002:260–6.
CAS
CrossRef
Google Scholar
Boernsen KO, Gatzek S, Imbert G. Controlled protein precipitation in combination with chip-based nanospray infusion mass spectrometry. An approach for metabolomics profiling of plasma. Anal Chem. 2005;77(22):7255–64.
CAS
PubMed
CrossRef
Google Scholar
Want EJ, Smith CA, Qin C, Van Horne KC, Siuzdak G. Phospholipid capture combined with non-linear chromatographic correction for improved serum metabolite profiling. Metabolomics. 2006;2(3):145–54.
CAS
CrossRef
Google Scholar
Michopoulos F, Lai L, Gika H, Theodoridis G, Wilson I. UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. J Proteome Res. 2009;8(4):2114–21.
CAS
PubMed
CrossRef
Google Scholar
David A, Abdul-Sada A, Lange A, Tyler CR, Hill EM. A new approach for plasma (xeno) metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. J Chromatogr A. 2014;1365:72–85.
CAS
PubMed
CrossRef
Google Scholar
Álvarez-Sánchez B, Priego-Capote F, de Castro ML. Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography–time of flight/mass spectrometry. J Chromatogr A. 2012;1248:178–81.
PubMed
CrossRef
CAS
Google Scholar
Zhang A, Sun H, Wang X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol. 2012;168(6):1718–27.
CAS
PubMed
CrossRef
Google Scholar
Takeda I, Stretch C, Barnaby P, Bhatnager K, Rankin K, Fu H, Weljie A, Jha N, Slupsky C. Understanding the human salivary metabolome. NMR Biomed. 2009;22(6):577–84.
CAS
PubMed
CrossRef
Google Scholar
Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6(1):78–95.
CAS
PubMed
CrossRef
Google Scholar
Dame ZT, Aziat F, Mandal R, Krishnamurthy R, Bouatra S, Borzouie S, Guo AC, Sajed T, Deng L, Lin H, Liu P. The human saliva metabolome. Metabolomics. 2015;11(6):1864–83.
CAS
CrossRef
Google Scholar
Wang Q, Gao P, Wang X, Duan Y. The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Sci Rep. 2014;4:6802.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Santone C, Dinallo V, Paci M, D’Ottavio S, Barbato G, Bernardini S. Saliva metabolomics by NMR for the evaluation of sport performance. J Pharm Biomed Anal. 2014;88:441–6.
CAS
PubMed
CrossRef
Google Scholar
Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr. 2006;84(3):531–9.
CAS
PubMed
Google Scholar
Bessonneau V, Bojko B, Pawliszyn J. Analysis of human saliva metabolome by direct immersion solid-phase microextraction LC and benchtop orbitrap MS. Bioanalysis. 2013;5(7):783–92.
CAS
PubMed
CrossRef
Google Scholar
Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, Cheng D, Eisner R, Gautam B, Tzur D, Sawhney S. The human cerebrospinal fluid metabolome. J Chromatogr B. 2008;871(2):164–73.
CAS
CrossRef
Google Scholar
Zhang A, Sun H, Wang P, Han Y, Wang X. Recent and potential developments of biofluid analyses in metabolomics. J Proteomics. 2012;75(4):1079–88.
CAS
PubMed
CrossRef
Google Scholar
Maillet S, Vion-Dury J, Confort-Gouny S, Nicoli F, Lutz NW, Viout P, Cozzone PJ. Experimental protocol for clinical analysis of cerebrospinal fluid by high resolution proton magnetic resonance spectroscopy. Brain Res Protoc. 1998;3(2):123–34.
CAS
CrossRef
Google Scholar
Mandal R, Guo AC, Chaudhary KK, Liu P, Yallou FS, Dong E, Aziat F, Wishart DS. Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update. Genome Med. 2012;4(4):1.
CAS
CrossRef
Google Scholar
Mena-Bravo A, de Castro ML. Sweat: a sample with limited present applications and promising future in metabolomics. J Pharm Biomed Anal. 2014;90:139–47.
CAS
PubMed
CrossRef
Google Scholar
Calderón-Santiago M, Priego-Capote F, Jurado-Gámez B, de Castro ML. Optimization study for metabolomics analysis of human sweat by liquid chromatography–tandem mass spectrometry in high resolution mode. J Chromatogr A. 2014;1333:70–8.
PubMed
CrossRef
CAS
Google Scholar
Kutyshenko VP, Molchanov M, Beskaravayny P, Uversky VN, Timchenko MA. Analyzing and mapping sweat metabolomics by high-resolution NMR spectroscopy. Plos One. 2011;6(12):e28824.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Smilowitz JT, O’Sullivan A, Barile D, German JB, Lönnerdal B, Slupsky CM. The human milk metabolome reveals diverse oligosaccharide profiles. J Nutr. 2013;143(11):1709–18.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Praticò G, Capuani G, Tomassini A, Baldassarre ME, Delfini M, Miccheli A. Exploring human breast milk composition by NMR-based metabolomics. Nat Prod Res. 2014;28(2):95–101.
PubMed
CrossRef
CAS
Google Scholar
Villaseñor A, Garcia-Perez I, Garcia A, Posma JM, Fernández-López M, Nicholas AJ, Modi N, Holmes E, Barbas C. Breast milk metabolome characterization in a single-phase extraction, multiplatform analytical approach. Anal Chem. 2014;86(16):8245–52.
PubMed
CrossRef
CAS
Google Scholar
Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC. Metabolic phenotyping in clinical and surgical environments. Nature. 2012;491(7424):384–92.
CAS
PubMed
CrossRef
Google Scholar
Čuperlović-Culf M, Barnett DA, Culf AS, Chute I. Cell culture metabolomics: applications and future directions. Drug Discov Today. 2010;15(15):610–21.
PubMed
CrossRef
CAS
Google Scholar
Dunn WB, Lin W, Broadhurst D, Begley P, Brown M, Zelena E, Vaughan AA, Halsall A, Harding N, Knowles JD, Francis-McIntyre S. Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics. 2015;11(1):9–26.
CAS
PubMed
CrossRef
Google Scholar
Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013;31(5):419–25.
CAS
PubMed
CrossRef
Google Scholar
Halama A. Metabolomics in cell culture—a strategy to study crucial metabolic pathways in cancer development and the response to treatment. Arch Biochem Biophys. 2014;564:100–9.
CAS
PubMed
CrossRef
Google Scholar
Zhang A, Sun H, Xu H, Qiu S, Wang X. Cell metabolomics. Omics J Integrative Biol. 2013;17(10):495–501.
CAS
CrossRef
Google Scholar
Kim DH, Achcar F, Breitling R, Burgess KE, Barrett MP. LC–MS-based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes. Metabolomics. 2015;11(6):1721–32.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mackay GM, Zheng L, van den Broek NJF, Gottlieb E. Analysis of cell metabolism using LC-MS and isotope tracers. In: Metallo CM, editor. Methods in enzymology. Metabolic analysis using stable isotopes. 1st ed. Academic Press; Waltham, USA 2015.
Google Scholar
Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discovery. 2011;10(9):671–84.
CAS
PubMed
CrossRef
Google Scholar
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Schaeffer WI. Usage of vertebrate, invertebrate and plant cell, tissue and organ culture terminology. In Vitro. 1984;20(1):19–24.
CAS
PubMed
CrossRef
Google Scholar
León Z, García‐Cañaveras JC, Donato MT, Lahoz A. Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis. 2013;34(19):2762–75.
PubMed
Google Scholar
Hounoum BM, Blasco H, Nadal-Desbarats L, Diémé B, Montigny F, Andres CR, Emond P, Mavel S. Analytical methodology for metabolomics study of adherent mammalian cells using NMR, GC-MS and LC-HRMS. Anal Bioanal Chem. 2015;407(29):8861–72.
CrossRef
CAS
Google Scholar
Vuckovic D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography–mass spectrometry. Anal Bioanal Chem. 2012;403(6):1523–48.
CAS
PubMed
CrossRef
Google Scholar
Paglia G, Hrafnsdóttir S, Magnúsdóttir M, Fleming RM, Thorlacius S, Palsson BØ, Thiele I. Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole–time of flight mass spectrometry (UPLC–Q–ToF-MS). Anal Bioanal Chem. 2012;402(3):1183–98.
CAS
PubMed
CrossRef
Google Scholar
Mercier P, Lewis MJ, Chang D, Baker D, Wishart DS. Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR. 2011;49(3-4):307–23.
CAS
PubMed
CrossRef
Google Scholar
Dietmair S, Timmins NE, Gray PP, Nielsen LK, Krömer JO. Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem. 2010;404(2):155–64.
CAS
PubMed
CrossRef
Google Scholar
Bordag N, Janakiraman V, Nachtigall J, Maldonado SG, Bethan B, Laine JP, Fux E. Fast filtration of bacterial or mammalian suspension cell cultures for optimal metabolomics results. PLoS One. 2016;11(7):e0159389.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Hounoum BM, Blasco H, Emond P, Mavel S. Liquid chromatography–high-resolution mass spectrometry-based cell metabolomics: experimental design, recommendations, and applications. Trends Anal Chem. 2016;75:118–28.
CrossRef
CAS
Google Scholar
Sellick CA, Hansen R, Stephens GM, Goodacre R, Dickson AJ. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc. 2011;6(8):1241–9.
CAS
PubMed
CrossRef
Google Scholar
Dietmair S, Hodson MP, Quek LE, Timmins NE, Chrysanthopoulos P, Jacob SS, Gray P, Nielsen LK. Metabolite profiling of CHO cells with different growth characteristics. Biotechnol Bioeng. 2012;109(6):1404–14.
CAS
PubMed
CrossRef
Google Scholar
Han W, Li L. Matrix effect on chemical isotope labeling and its implication in metabolomic sample preparation for quantitative metabolomics. Metabolomics. 2015;11(6):1733–42.
CAS
CrossRef
Google Scholar
Bi H, Krausz KW, Manna SK, Li F, Johnson CH, Gonzalez FJ. Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem. 2013;405(15):5279–89.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Lorenz MA, Burant CF, Kennedy RT. Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Anal Chem. 2011;83(9):3406–14.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dettmer K, Nürnberger N, Kaspar H, Gruber MA, Almstetter MF, Oefner PJ. Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem. 2011;399(3):1127–39.
CAS
PubMed
CrossRef
Google Scholar
Teng Q, Huang W, Collette TW, Ekman DR, Tan C. A direct cell quenching method for cell-culture based metabolomics. Metabolomics. 2009;5(2):199–208.
CAS
CrossRef
Google Scholar
Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, Herrerías A, Batchelder EM, Plongthongkum N, Lutz M, Berggren WT. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012;22(1):168–77.
CAS
PubMed
CrossRef
Google Scholar
Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2006;2(12):e132.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Silva LP, Lorenzi PL, Purwaha P, Yong V, Hawke DH, Weinstein JN. Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines. Anal Chem. 2013;85(20):9536–42.
CAS
PubMed
CrossRef
Google Scholar
Fazelzadeh P, Hangelbroek RW, Tieland M, de Groot LC, Verdijk LB, van Loon LJ, Smilde AK, Alves RD, Vervoort J, Müller M, van Duynhoven JP. The muscle metabolome differs between healthy and frail older adults. J Proteome Res. 2016;15(2):499–509.
CAS
PubMed
CrossRef
Google Scholar
Mayr M, Yusuf S, Weir G, Chung YL, Mayr U, Yin X, Ladroue C, Madhu B, Roberts N, De Souza A, Fredericks S. Combined metabolomic and proteomic analysis of human atrial fibrillation. J Am College Cardiol. 2008;51(5):585–94.
CAS
CrossRef
Google Scholar
Schönfels W, Patsenker E, Fahrner R, Itzel T, Hinrichsen H, Brosch M, Erhart W, Gruodyte A, Vollnberg B, Richter K, Landrock A. Metabolomic tissue signature in human non‐alcoholic fatty liver disease identifies protective candidate metabolites. Liver Int. 2015;35(1):207–14.
CrossRef
CAS
Google Scholar
Rocha CM, Barros AS, Goodfellow BJ, Carreira IM, Gomes A, Sousa V, Bernardo J, Carvalho L, Gil AM, Duarte IF. NMR metabolomics of human lung tumours reveals distinct metabolic signatures for adenocarcinoma and squamous cell carcinoma. Carcinogenesis. 2015;36(1):68–75.
CAS
PubMed
CrossRef
Google Scholar
Dunn WB, Brown M, Worton SA, Davies K, Jones RL, Kell DB, Heazell AE. The metabolome of human placental tissue: investigation of first trimester tissue and changes related to preeclampsia in late pregnancy. Metabolomics. 2012;8(4):579–97.
CAS
CrossRef
Google Scholar
Anwar MA, Vorkas PA, Li JV, Shalhoub J, Want EJ, Davies AH, Holmes E. Optimization of metabolite extraction of human vein tissue for ultra performance liquid chromatography-mass spectrometry and nuclear magnetic resonance-based untargeted metabolic profiling. Analyst. 2015;140(22):7586–97.
CAS
PubMed
CrossRef
Google Scholar
Randhawa M, Sangar V, Tucker-Samaras S, Southall M. Metabolic signature of sun exposed skin suggests catabolic pathway overweighs anabolic pathway. PLoS One. 2014;9(3):e90367.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Allwood JW, Winder CL, Dunn WB, Goodacre R. Considerations in sample preparation, collection, and extraction approaches applied in microbial, plant, and mammalian metabolic profiling. In: Lutz NW, Sweedler JV, Wevers RA, editors. Methodologies for metabolomics: experimental strategies and techniques. 1st ed. Cambridge: Cambridge University Press; 2013.
Google Scholar
Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N, Holmes E, Nicholson JK. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8(1):17–32.
CAS
PubMed
CrossRef
Google Scholar
Brown DG, Rao S, Weir TL, O’Malia J, Bazan M, Brown RJ, Ryan EP. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016;4(1):1.
CrossRef
Google Scholar
Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. 2012;8(1):133–42.
CrossRef
CAS
Google Scholar
Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, Eyassu F. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–5.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Vorkas PA, Isaac G, Anwar MA, Davies AH, Want EJ, Nicholson JK, Holmes E. Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: application to cardiovascular disease. Anal Chem. 2015;87(8):4184–93.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gehmlich K, Dodd MS, Allwood JW, Kelly M, Bellahcene M, Lad HV, Stockenhuber A, Hooper C, Ashrafian H, Redwood CS, Carrier L. Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy. Mol Bio Syst. 2015;11(2):564–73.
CAS
Google Scholar
Chen S, Hoene M, Li J, Li Y, Zhao X, Häring HU, Schleicher ED, Weigert C, Xu G, Lehmann R. Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J Chromatogr A. 2013;1298:9–16.
CAS
PubMed
CrossRef
Google Scholar
Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509.
CAS
PubMed
Google Scholar
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wu H, Southam AD, Hines A, Viant MR. High-throughput tissue extraction protocol for NMR-and MS-based metabolomics. Anal Biochem. 2008;372(2):204–12.
CAS
PubMed
CrossRef
Google Scholar
Rao S, Walters KB, Wilson L, Chen B, Bolisetty S, Graves D, Barnes S, Agarwal A, Kabarowski JH. Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. Am J Physiol Renal Physiol. 2016;310(10):F1136–47.
CAS
PubMed
CrossRef
Google Scholar
Jarmusch AK, Pirro V, Baird Z, Hattab EM, Cohen-Gadol AA, Cooks RG. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc Natl Acad Sci U S A. 2016;113(6):1486–91.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Park JW, Jeong H, Kang B, Kim SJ, Park SY, Kang S, Kim HK, Choi JS, Hwang D, Lee TG. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface. Sci Rep. 2015;5:5.
Google Scholar
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJ, van de Velde CJ, Weirich G, Erlmeier F. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc. 2016;11(8):1428–43.
PubMed
CrossRef
Google Scholar
Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezső B, Damjanovich L, Darzi A, Nicholson JK. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Translational Med. 2013;5(194):194ra93.
CrossRef
CAS
Google Scholar
Kinross JM, Muirhead L, Alexander J, Balog J, Guallar-Hoya C, Speller A, Golff O, Goldin R, Darzi A, Nicholson J, Takats Z. iKnife: rapid evaporative ionization mass spectrometry (REIMS) enables real-time chemical analysis of the mucosal lipidome for diagnostic and prognostic use in colorectal cancer. Cancer Res. 2016;76(14 Suppl):3977.
CrossRef
Google Scholar