Skip to main content

Metabolomics: Definitions and Significance in Systems Biology

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 965))

Abstract

Nowadays, there is a growing interest in deeply understanding biological mechanisms not only at the molecular level (biological components) but also the effects of an ongoing biological process in the organism as a whole (biological functionality), as established by the concept of systems biology. Within this context, metabolomics is one of the most powerful bioanalytical strategies that allow obtaining a picture of the metabolites of an organism in the course of a biological process, being considered as a phenotyping tool. Briefly, metabolomics approach consists in identifying and determining the set of metabolites (or specific metabolites) in biological samples (tissues, cells, fluids, or organisms) under normal conditions in comparison with altered states promoted by disease, drug treatment, dietary intervention, or environmental modulation. The aim of this chapter is to review the fundamentals and definitions used in the metabolomics field, as well as to emphasize its importance in systems biology and clinical studies.

The original version of this book was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-47656-8_14

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CE:

Capillary electrophoresis

DA:

Discriminant analysis

DI:

Direct infusion

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

IPLC:

Ion-pairing liquid chromatography

LC:

Liquid chromatography

MALDI:

Matrix-assisted laser desorption ionization

MS:

Mass spectrometry

MSI:

Mass spectrometry imaging

NMR:

Nuclear magnetic resonance

PCA:

Principal component analysis

PLS:

Partial least squares

OPLS:

Orthogonal projections to latent structures

QC:

Quality control

SRM:

Selected reaction monitoring

UPLC:

Ultra-performance liquid chromatography

References

  1. Westerhoff HV, Alberghina L. Systems biology: did we know it all along? In: Alberghina L, Westerhoff HV, editors. Systems biology – definitions and perspectives. Berlin: Springer; 2005. p. 3–9.

    Google Scholar 

  2. Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16:373–8.

    Article  CAS  PubMed  Google Scholar 

  3. Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001;2:155–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nicholson J, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;11:1181–9.

    Article  Google Scholar 

  5. Dunn WB, Ellis DI. Metabolomics: current analytical platforms and methodologies. Trends Anal Chem. 2005;24:285–94.

    Article  CAS  Google Scholar 

  6. Lenz EM, Wilson ID. Analytical strategies in metabonomics. J Proteome Res. 2007;6:443–58.

    Article  CAS  PubMed  Google Scholar 

  7. Nicholson JK, Lindon JC. Systems biology: metabonomics. Nature. 2008;455:1054–6.

    Article  CAS  PubMed  Google Scholar 

  8. Kaddurah-Daouk R, Krishnan KRR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmachol. 2009;34:173–86.

    Article  CAS  Google Scholar 

  9. Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov. 2002;1:153–61.

    Article  CAS  PubMed  Google Scholar 

  10. Horning EC, Horning MG. Human metabolic profiles obtained by GC and GC/MS. J Chromatogr Sci. 1971;9:129–40.

    Article  CAS  Google Scholar 

  11. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG. Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol. 2005;3:557–65.

    Article  CAS  PubMed  Google Scholar 

  12. Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods. 2015;12:1091–7.

    CAS  PubMed  Google Scholar 

  13. Williams RJ, Kirby H. Paper chromatography using capillary ascent. Science. 1948;107:481–3.

    Article  CAS  PubMed  Google Scholar 

  14. Gates SC, Sweeley CC. Quantitative metabolic profiling based on gas chromatography. Clin Chem. 1978;24:1663–73.

    CAS  PubMed  Google Scholar 

  15. van der Greef J, Smilde AK. Symbiosis of chemometrics and metabolomics: past, present, and future. J Chemometrics. 2005;19:376–86.

    Article  Google Scholar 

  16. Spener F, Lagarde M, Géloën A, Record M. What is lipidomics? Eur J Lipid Sci Technol. 2003;105:481–2.

    Article  Google Scholar 

  17. Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res. 2003;44:1071–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sethi S, Hayashi MA, Sussulini A, Tasic L, Brietzke E. Analytical approaches for lipidomics and its potential applications in neuropsychiatric disorders. World J Biol Psychiatry. 2016;26:1–15.

    Article  Google Scholar 

  19. Villas-Bôas S, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24:613–46.

    Article  PubMed  Google Scholar 

  20. Lindon JC, Nicholson JK, Holmes E. The handbook of metabonomics and metabolomics. Amsterdam: Elsevier; 2007. ISBN 978-0-444-52841-4.

    Google Scholar 

  21. Fiehn O. Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–71.

    Article  CAS  PubMed  Google Scholar 

  22. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodríguez L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: modern lipid analysis. Trends Anal Chem. 2009;28:393–403.

    Article  CAS  Google Scholar 

  23. Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, Nicholson JK. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2:2692–703.

    Article  CAS  PubMed  Google Scholar 

  24. Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal Bioanal Chem. 2015;407:4879–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD. Metabolomics analysis II. Preparation of biological samples prior to detection. Trends Anal Chem. 2010;29:120–7.

    Article  Google Scholar 

  26. Garcia A, Barbas C. Gas chromatography–mass spectrometry (GC-MS)-based metabolomics. In: Metz TO, editor. Metabolic profiling, methods in molecular biology 708. New York: Springer; 2011. p. 191–204.

    Chapter  Google Scholar 

  27. Kuehnbaum NL, Britz-McKibbin P. New advances in separation science for metabolomics: resolving chemical diversity in a post-genomic era. Chem Rev. 2013;113:2437–68.

    Article  CAS  PubMed  Google Scholar 

  28. Villas-Bôas SG, Bruheim P. The potential of metabolomics tools bioremediation studies. OMICS. 2007;11:305–13.

    Article  PubMed  Google Scholar 

  29. Bowen BP, Northen TR. Dealing with the unknown: metabolomics and metabolite atlases. J Am Soc Mass Spectrom. 2010;21:1471–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ludwig C, Viant MR. Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal. 2010;21:22–32.

    Article  CAS  PubMed  Google Scholar 

  31. Viant MR, Sommer U. Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics. 2013;9:S144–58.

    Article  Google Scholar 

  32. Wishart DS. Quantitative metabolomics using NMR. Trends Anal Chem. 2008;27:228–37.

    Article  CAS  Google Scholar 

  33. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS. The human serum metabolome. PLoS One. 2011;6:e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fiehn O. Extending the breadth of metabolite profiling by gas chromatography coupled to mass spectrometry. Trends Anal Chem. 2008;27:261–9.

    Article  CAS  Google Scholar 

  35. Jonsson P, Gullberg J, Nordstrom A, Kusano M, Kowalczyk M, Sjostrom M, Moritz T. A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Anal Chem. 2004;76:1738–45.

    Article  CAS  PubMed  Google Scholar 

  36. Koek MM, Jellema RH, van der Greef J, Tas CA, Hankemeier T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics. 2011;7:307–28.

    Article  CAS  PubMed  Google Scholar 

  37. Hill CB, Roessner U. Metabolic profiling of plants by GC–MS. In: Weckwerth W, Kahl G, editors. The handbook of plant metabolomics. Weinheim: Wiley-VHC Verlag GmbH & Co. KGaA; 2013. doi:10.1002/9783527669882.ch1.

    Google Scholar 

  38. Theodoridis GA, Gika HG, Want EJ, Wilson ID. Liquid chromatography–mass spectrometry based global metabolite profiling: a review. Anal Chim Acta. 2012;711:7–16.

    Article  CAS  PubMed  Google Scholar 

  39. Forcisi S, Moritz F, Kanawati B, Tziotis D, Lehmann R, Schmitt-Kopplin P. Liquid chromatography–mass spectrometry in metabolomics research: mass analyzers in ultra high pressure liquid chromatography coupling. J Chromatogr A. 2013;1292:51–65.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Mol Biosyst. 2012;8:470–81.

    Article  CAS  PubMed  Google Scholar 

  41. Cubbon S, Antonio C, Wilson J, Thomas-Oates J. Metabolomic applications of HILIC–LC–MS. Mass Spectrom Rev. 2010;29:671–84.

    Article  CAS  PubMed  Google Scholar 

  42. Kloos D-P, Lingeman H, Niessen WMA, Deelder AM, Giera M, Mayboroda OA. Evaluation of different column chemistries for fast urinary metabolic profiling. J Chromatogr B. 2013;927:90–6.

    Article  CAS  Google Scholar 

  43. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2:488–94.

    Article  CAS  PubMed  Google Scholar 

  44. Barbas C, Moraes EP, Viallaseñor A. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharm Biomed. 2011;55:823–31.

    Article  CAS  Google Scholar 

  45. Ramautar R, Somsen GW, Jong GJ. CE-MS for metabolomics: developments and applications in the period 2012–2014. Electrophoresis. 2015;36:212–24.

    Article  CAS  PubMed  Google Scholar 

  46. Han J, Danell RM, Patel JR, Gumerov DR, Scarlett CO, Speir JP, Parker CE, Rusyn I, Zeisel S, Borchers CH. Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics. 2008;4:128–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mirnezami R, Spagou K, Vorkas PA, Lewis MR, Kinross J, Want E, Shion H, Goldin RD, Darzi A, Takats Z, Holmes E, Cloarec O, Nicholson JK. Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry (MALDI-MSI) reveals novel cancer-associated field effects. Mol Oncol. 2014;8:39–49.

    Article  CAS  PubMed  Google Scholar 

  48. Hyötyläinen T, Orešič M. Bioanalytical techniques in nontargeted clinical lipidomics. Bioanalysis. 2016;8:351–64.

    Article  PubMed  Google Scholar 

  49. Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4:2249–64.

    Article  CAS  PubMed  Google Scholar 

  50. Ludwig C, Günther UL. MetaboLab –advanced NMR data processing and analysis for metabolomics. BMC Bioinformatics. 2011;12:366–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mercier P, Lewis MJ, Chang D, Baker D, Wishart DS. Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR. 2011;49:307–23.

    Article  CAS  PubMed  Google Scholar 

  52. Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform. 2012;7:96–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78:779–87.

    Article  CAS  PubMed  Google Scholar 

  54. Katajamaa M, Miettinen J, Oresic M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics. 2006;22:634–6.

    Article  CAS  PubMed  Google Scholar 

  55. Lommen A. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem. 2009;81:3079–86.

    Article  CAS  PubMed  Google Scholar 

  56. Automated mass spectral deconvolution and identification system. http://www.amdis.net. Accessed July 2016.

  57. Misra BB, van der Hooft JJJ. Updates in metabolomics tools and resources: 2014-2015. Electrophoresis. 2016;37:86–110.

    Article  CAS  PubMed  Google Scholar 

  58. Koal T, Deigner H-P. Challenges in mass spectrometry based targeted metabolomics. Curr Mol Med. 2010;10:216–26.

    Article  CAS  PubMed  Google Scholar 

  59. Lu W, Bennett BD, Rabinowitz JD. Analytical strategies for LC–MS-based targeted metabolomics. J Chromatogr B. 2008;871:236–42.

    Article  CAS  Google Scholar 

  60. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem. 2006;78:4430–42.

    Article  CAS  PubMed  Google Scholar 

  61. Guo B, Chen B, Liu A, Zhu W, Yao S. Liquid chromatography-mass spectrometric multiple reaction monitoring-based strategies for expanding targeted profiling towards quantitative metabolomics. Curr Drug Metab. 2012;13:1226–43.

    Article  CAS  PubMed  Google Scholar 

  62. Biocrates life sciences. http://www.biocrates.com. Accessed July 2016.

  63. Madsen R, Lundstedt T, Trygg J. Chemometrics in metabolomics - A review in human disease diagnosis. Anal Chim Acta. 2010;659:23–33.

    Article  CAS  PubMed  Google Scholar 

  64. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA. Assessment of PLS-DA cross validation. Metabolomics. 2008;4:81–9.

    Article  CAS  Google Scholar 

  65. Griffiths WJ, Koal T, Wang Y, Kohl M, Enot DP, Deigner H-P. Targeted metabolomics for biomarker discovery. Angew Chem Int Ed. 2010;49:5426–45.

    Article  CAS  Google Scholar 

  66. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35:D521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34:D354–7.

    Article  CAS  PubMed  Google Scholar 

  68. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 2009;37:W623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tautenhahn R, Cho K, Uritboonthai W, Zhu ZJ, Patti GJ, Siuzdak G. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol. 2012;30:826–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Lida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45:703–14.

    Article  CAS  PubMed  Google Scholar 

  71. Fahy E, Sud M, Cotter D, Subramaniam S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 2007;35:W606–12.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcántara R, Darsow M, Guedj M, Ashburne M. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2008;36:D344–50.

    Article  CAS  PubMed  Google Scholar 

  73. Brown M, Dunn WB, Dobson P, Patel Y, Winder CL, Francis-McIntyre S, Begley P, Carroll K, Broadhurst D, Tseng A, Swainston N, Spasic I, Goodacre R, Kell DB. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst. 2009;134:1322–32.

    Article  CAS  PubMed  Google Scholar 

  74. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Wenger RK, Yao H, Markley JL. Biomagresbank. Nucleic Acids Res. 2008;36:D402–8.

    Article  CAS  PubMed  Google Scholar 

  75. MacKinnon N, Somashekar BS, Tripathi P, Ge W, Rajendiran TM, Chinnaiyan AM, Ramamoorthy A. MetaboID: agraphical user interface package for assignment of 1H NMR spectra of bodyfluids and tissues. J Magn Reson. 2013;226:93–9.

    Article  CAS  PubMed  Google Scholar 

  76. Suhre K, Schmitt-Kopplin P. MassTRIX: mass translator into pathways. Nucleic Acids Res. 2008;36:W481–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Mueller LA, Ong Q, Paley S, Pujar A, Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp PD. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2012;40:D742–53.

    Article  CAS  PubMed  Google Scholar 

  78. Frolkis A, Knox C, Lim E, Jewison T, Law V, Hau DD, Liu P, Gautam B, Ly S, Guo AC, Xia J, Liang Y, Shrivastava S, Wishart DS. SMPDB: The Small Molecule Pathway Database. Nucleic Acids Res. 2010;38:D-480–7.

    Article  CAS  Google Scholar 

  79. Haug K, Salek RM, Conesa P, Hastings J, Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, González-Beltrán A, Sansone S-A, Griffin JL, Steinbeck C. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013;41:D781–6.

    Article  CAS  PubMed  Google Scholar 

  80. Haw R, Stein L. Using the reactome database. Curr Protoc Bioinformatics. 2012;38:8.7.1–23.

    Google Scholar 

  81. Karp PD, Caspi R. A survey of metabolic databases emphasizing the MetaCyc family. Arch Toxicol. 2011;85:1015–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liesenfeld DB, Habermann N, Owen RW, Scalbert A, Ulrich CM. Review of mass spectrometry–based metabolomics in cancer research. Cancer Epidemiol Biomarkers Prev. 2013;22:2182–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Garcia-Perez I, Angulo S, Utzinger J, Holmes E, Legido-Quigley C, Barbas C. Chemometric and biological validation of a capillary electrophoresis metabolomic experiment of Schistosoma mansoni infection in mice. Electrophoresis. 2010;31:2338–48.

    Article  CAS  PubMed  Google Scholar 

  84. Ganti S, Taylor SL, Kim K, Hoppel CL, Guo L, Yang J, Evans C, Weiss RH. Urinary acylcarnitines are altered in human kidney cancer. Int J Cancer. 2012;130:2791–800.

    Article  CAS  PubMed  Google Scholar 

  85. Mastrangelo A, Armitage EG, García A, Barbas C. Metabolomics as a tool for drug discovery and personalised medicine. A review. Curr Top Med Chem. 2014;14:2627–36.

    Article  CAS  PubMed  Google Scholar 

  86. Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016. doi:10.1038/nrd.2016.32.

    PubMed  Google Scholar 

  87. Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud. 2015;1:a000588.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Spratlin JL, Sekova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology; a review. Clin Cancer Res. 2009;15:431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mamas M, Dunn WB, Neyses L, Goodacre R. The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxicol. 2011;85:5–17.

    Article  CAS  PubMed  Google Scholar 

  90. Friedrich N. Metabolomics in diabetes research. J Endocrinol. 2012;215:29–42.

    Article  CAS  PubMed  Google Scholar 

  91. Becker S, Kortz L, Helmschrodt C, Thiery J, Ceglarek U. LC-MS-based metabolomics in the clinical laboratory. J Chromatogr B. 2012;883:68–75.

    Article  Google Scholar 

  92. Zao Y-Y. Metabolomics in chronic kidney disease. Clin Chim Acta. 2013;422:59–69.

    Article  Google Scholar 

  93. Ramautar R, Berger R, van der Greef J, Hankmeier T. Human metabolomics: strategies to understand biology. Chem Biol. 2013;17:841–6.

    CAS  Google Scholar 

  94. Bobrovnikova-Marjon E, Hurov JB. Targeting metabolic changes in cancer: novel therapeutic approaches. Annu Rev Med. 2014;65:157–70.

    Article  CAS  PubMed  Google Scholar 

  95. Kumar B, Prakash A, Ruhela RK, Medhi B. Potential of metabolomics in preclinical and clinical drug development. Pharmol Rep. 2014;66:956–63.

    Article  CAS  Google Scholar 

  96. Dessì A, Marincola FC, Masili A, Gazzolo D, Fanos V. Clinical metabolomics and nutrition: the new frontier in neonatology and pediatrics. Biomed Res Int. 2014;2014:981219.

    Google Scholar 

  97. Trushina E, Mielke MM. Recent advances in the application of metabolomics to Alzheimer’s disease. Biochem Biophys Acta. 2014;1842:1232–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Sussulini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Klassen, A. et al. (2017). Metabolomics: Definitions and Significance in Systems Biology. In: Sussulini, A. (eds) Metabolomics: From Fundamentals to Clinical Applications. Advances in Experimental Medicine and Biology(), vol 965. Springer, Cham. https://doi.org/10.1007/978-3-319-47656-8_1

Download citation

Publish with us

Policies and ethics