Skip to main content

Objectives and Structures of the Book

  • Chapter
  • First Online:
EEG Signal Analysis and Classification

Part of the book series: Health Information Science ((HIS))

  • 4059 Accesses

Abstract

In the medical and health community, EEG signals are the most utilized signals in the clinical assessment of brain states, detection of epileptic seizures and identification of mental states for BCI systems. A reliable automatic classification and detection system would help to ensure an objective assessment thus facilitating treatments, and it would significantly improve the diagnosis of epilepsy. EEG signals could also be used for the long-term monitoring and treatment of patients. This chapter also provides a description of the experimental databases and performance evaluation measures used in this research. Furthermore, this chapter discusses the commonly used methods of EEG signal classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulkadir, S. (2009) ‘Multiclass least-square support vector machines for analog modulation classification’, Expert System with Applications, Vol. 36, pp. 6681–6685.

    Google Scholar 

  • Acharjee P. P. and Shahnaz C. (2012) ‘Multiclass Epileptic Seizure Classification Using Time-Frequency Analysis of EEG Signals’, 7th International Conference on Electrical and Computer Engineering, 20-22 December, 2012, Dhaka, Bangladesh, pp. 260–263.

    Google Scholar 

  • Adeli, H., Zhou, Z. and Dadmehr, N. (2003) ‘Analysis of EEG Records in an Epileptic Patient Using Wavelet Transform’, J. Neurosci. Methods, Vol. 123, no. 1, pp. 69–87.

    Google Scholar 

  • Akay, M. (1998) Time Frequency and Wavelets in Biomedical Signal Processing, New York: Institute of Electrical and Electronics Engineers, Inc.

    Google Scholar 

  • Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E.(2001) ‘Indication of Non Linear Deterministic and Finite-Dimensional Structures in Time Series of Brain Electrical Activity: Dependence on Recording Region and Brain State’, Physical Review E, Vol. 64, 061907.

    Google Scholar 

  • Barreto, A. B., Taberner, A. M. and Vicente, L. M. (1996) ‘Classification of spatio-temporal EEG readiness potentials towards the development of a brain-computer interface’, In Southeastcon ‘96. ‘Bringing Together Education, Science and Technology’, Proceedings of the IEEE, pp. 99–102.

    Google Scholar 

  • BCI competition III, 2005, http://www.bbci.de/competition/iii.

  • Bian, Y., Zhao, L., Li, H., Yang, G., Shen, H. and Meng, Q. (2010) ‘Research on Brain Computer Interface Technology Based on Steady State Visual Evoked Potentials, Proceedings of the IEEE on Bioinformatics and Biomedical Engineering, pp. 1–4.

    Google Scholar 

  • Blankertz, B., Muller, K..R., Krusienki, D. J., Schalk, G., Wolpaw, J.R., Schlogl, A., Pfurtscheller, S., Millan, J. De. R., Shrooder, M. and Birbamer, N. (2006) ‘The BCI competition III: validating alternative approaches to actual BCI problems’, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 14, no. 2, pp. 153–159.

    Google Scholar 

  • Blanchard G and Blankertz B (2004) ‘BCI competition 2003-Data set IIa: Spatial patterns of self-controlled brain rhythm modulations’ IEEE Transactions on Biomedical Engineering, Vol. 51, pp. 1062–1066.

    Google Scholar 

  • Burke D P, Kelly S P, Chazal P, Reilly R B and Finucane C (2005) ‘A parametric feature extraction and classification strategy for brain-computer interfacing’ IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13, pp. 12–17.

    Google Scholar 

  • Burges, C. (1998) ‘A tutorial on support vector machines for pattern recognition’ Data Mining and Knowledge Discovery, Vol. 2. pp. 121–167.

    Google Scholar 

  • Chandaka, S., Chatterjee, A. and Munshi, S. (2009) ‘Cross-correlation aided support vector machine classifier for classification of EEG signals’, Expert System with Applications, Vol. 36, pp. 1329–1336.

    Google Scholar 

  • Chiappa, S. and Millán, J.R. (2005) Data Set V < mental imagery, multi-class > [online]. Viewed 25 June 2009, http://ida.first.fraunhofer.de/projects/bci/competition_iii/desc_V.html.

  • Congedo, M., Lotte, F. and Lecuyer, A. (2006) ‘Classification of movement intention by spatially filtered electromagnetic inverse solutions’, Physics in Medicine and Biology, Vol. 51, no. 8, pp. 1971–1989.

    Google Scholar 

  • Duda, R.O., Hart, P.E. and Stork, D.G. (2001) Pattern Classification, 2nd edn. John Wiley & Sons, New York.

    Google Scholar 

  • EEG time series, 2005, [Online], Viewed 30 September 2008, http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html.

  • Fan, J., Shao, C., Ouyang, Y., Wang, J., Li, S. and Wang, Z. (2006) ‘Automatic seizure detection based on support vector machine with genetic algorithms’, SEAL 2006, LNCS 4247, pp. 845–852.

    Google Scholar 

  • Fawcett, T. (2006) ‘An introduction to ROC analysis’, Pattern Recognition Letters, Vol. 27, 861874.

    Google Scholar 

  • Felzer, T. and Freisieben, B. (2003) ‘Analysing EEG signals using the probability estimating guarded neural classifier’, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 2, no. 4, pp. 361–371.

    Google Scholar 

  • Garcia, G. N., Ebrahimi, T. and Vesin, J. M. (2003) ‘Support vector EEG classification in the fourier and time-frequency correlation domains’, Proceedings of IEEE EMBS Conference on Neural Engineering, pp 591–594.

    Google Scholar 

  • Guger C, Schlogl A, Neuper C, Walterspacher C, Strein D, Pfurtscheller T and Pfurtscheller G (2001) ‘Rapid prototyping of an EEG-based brain-computer interface (BCI)’ IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 9 pp. 49–58.

    Google Scholar 

  • Guler, N.F., Ubeylli, E. D. and Guler, I. (2005) ‘Recurrent neural networks employing Lyapunov exponents for EEG signals classification’, Expert System with Applications Vol. 29, pp. 506–514.

    Google Scholar 

  • Guler, I. And Ubeyli, E.D. (2007) ‘Multiclass support vector machines for EEG-signal classification’, IEEE Transactions on Information Technology in Biomedicine, Vol. 11, no. 2, pp. 117–126.

    Google Scholar 

  • Guler, I. and Ubeyli, E. D. (2005) ‘Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficient’, Journal of Neuriscience Methods, Vol. 148, pp. 113–121.

    Google Scholar 

  • Guo, L., Rivero, D., Seoane, J.A. and Pazos, A. (2009) ‘Classification of EEG signals using relative wavelet energy and artificial neural networks’, GCE, 12–14.

    Google Scholar 

  • Hanbay, D. (2009) ‘An expert system based on least square support vector machines for diagnosis of the valvular heart disease’, Expert System with Applications, Vol. 36, pp. 4232–4238.

    Google Scholar 

  • Haselsteiner, E. and Pfurtscheller, G. (2000) ‘Using Time-Dependant Neural Networks for EEG classification’, IEEE Transactions on Rehabilitation Engineering, Vol. 8, pp. 457–463.

    Google Scholar 

  • Hoya, T., Hori, G., Bakardjian, H., Nishimura, T., Suzuki, T., Miyawaki, Y., Funase, A. and Cao, J. (2003) ‘Classification of Single Trial EEG signals by a combined Principal and Independent Component Analysis and Probabilistic Neural Network Approach’, In Proceedings ICA2003, pp. 197–202.

    Google Scholar 

  • Jahankhani, P., Kodogiannis, V. and Revett, K. (2006) ‘EEG Signal Classification Using Wavelet Feature Extraction and Neural Networks’, IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA’06).

    Google Scholar 

  • Kabir, E., Siuly, and Zhang, Y. (2016) ‘Epileptic seizure detection from EEG signals using logistic model trees’, Brain Informatics, 3(2), pp. 93–100.

    Google Scholar 

  • Kamousi, B., Liu, Z. and He., B. (2005) ‘Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis’, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13, pp. 166–171.

    Google Scholar 

  • Kaneswaran, K., Arshak, K., Burke, E., Condron, J. (2010) ‘Towards a brain Controlled Assistive Technology for Powered Mobility’, Proceedings of the IEEE EMBS, pp. 4176–4180.

    Google Scholar 

  • Kay, S. M. (1988) Modern Spectral Estimation: Theory and Application, New Jersey: Prentice Hall.

    Google Scholar 

  • Kay, S. M., & Marple, S. L. (1981) ‘Spectrum analysis – A modern perspective’, Proceedings of the IEEE, Vol. 69, pp. 1380–1419.

    Google Scholar 

  • Kostov, A. and Polak, M. (2000) ‘Parallel man-machine training in development of EEG-based cursor control’, IEEE Transactions on Rehabilitation Engineering, Vol. 8, no. 2, pp. 203–205.

    Google Scholar 

  • Kousarrizi, M. R. N., Ghanbari, A. A., Teshnehlab, M., Aliyari, M. and Gharaviri, A. (2009) ‘Feature Extraction and Classification of EEG Signals using Wavelet Transform, SVM and Artificial Neural Networks for Brain Computer Interfaces’, 2009 International Joint Conference on Bioinformatics, System Biology and Intelligent Computing, pp. 352–355.

    Google Scholar 

  • Lotte F and Guan C (2011) ‘Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms’ IEEE Transactions on Biomedical Engineering, Vol. 58, pp. 355–362.

    Google Scholar 

  • Lee, H. and Choi, S. (2003) ‘PCA + HMM + SVM for EEG pattern classification’, Proceedings of the Seventh International IEEE Symposium on Signal Processing and Its Applications, pp 541–544.

    Google Scholar 

  • Lemm S, Blankertz B, Curio G and Muller K R (2005) ‘Spatio-spatial filters for improved classification of single trial EEG’ IEEE Transactions on Biomedical Engineering, Vol. 52, pp. 1541–1548.

    Google Scholar 

  • Lima, C. A. M., Coelho, A. L.V. and Chagas, S. (2009) ‘Automatic EEG signal classification for epilepsy diagnosis with Relevance Vector Machines’, Expert Systems with Applications, Vol. 36, pp. 10054–10059.

    Google Scholar 

  • Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F. and Arnaldi B. (2007) ‘A review of classification algorithms for EEG-based brain-computer interfaces’, Journal of Neural Engineering, Vol. 4, pp. R1–R13.

    Google Scholar 

  • Lu, H., Plataniotis, K.N. and Venetsanopoulos, A.N. (2009) ‘Regularized common spatial patterns with generic learning for EEG signal classification’, 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, September 2–6, 2009, pp. 6599–6602.

    Google Scholar 

  • Lu, H., Eng, H. L., Guan, C., Plataniotis, K. N. and Venetsanopoulos, A. N. (2010) ‘Regularized common spatial patterns with aggregation for EEG classification in small-sample setting’, IEEE Transactions on Biomedical Engineering, Vol. 57, no. 12 pp. 2936–2945.

    Google Scholar 

  • Makinac, M. (2005) ‘Support Vector Machine Approach for Classification of Cancerous Prostate Regions’, World Academy of Science, Engineering and Technology, 7.

    Google Scholar 

  • Md Norani, N.A., Mansor, W. and Khuan L.Y. (2010) ‘A Review of Signal Processing in Brain Computer Interface System’, 2010 IEEE EMBS Conference on Biomedical Engineering & Sciences (IECBES 2010), Kuala Lumpur, Malaysia, 30th November - 2nd December 2010, pp. 443–449.

    Google Scholar 

  • Millán, J.R (2004) ‘On the need for online learning in brain-computer interfaces’, Proc. 2004 Int. Joint Conf. Neural networks, Vol. 4, pp. 2877–2882.

    Google Scholar 

  • Millan, J. R., Renkens, F., Mourino, J. and Gerstner, W. (2004) ‘Noninvasive brain-actuated control of a mobile robot by human EEG’, IEEE Transactions on Biomedical Engineering, Vol. 51, no. 6, pp. 1026–1033.

    Google Scholar 

  • Ming, D., Zhu, Y., Qi, H., Wan, B., Hu, Y. and Luk, K. (2009) ‘Study on EEG-based Mouse System by using Brain-Computer Interface’, Proceedings of the IEEE on Virtual Environments, Human-Computer Intel1aces and Measurements Systems, pp 236–239.

    Google Scholar 

  • Murugavel A.S.M, Ramakrishnan S., Balasamy K. and Gopalakrishnan T. (2011) ‘Lyapunov features based EEG signal classification by multi-class SVM’ 2011 World Congress on Information and Communication Technologies,197–201.  

    Google Scholar 

  • Palaniappan, R., Paramesran, R., Nishida, S. and Saiwaki, N. (2002) ‘A new brain-computer interface design using Fuzzy ART MAP’, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 10, pp. 140–148.

    Google Scholar 

  • Penny, W. D., Roberts, S. J., Curran, E. A. and Stokes, M. J. (2000) ‘EEG-based communication: A Pattern Recognition Approach’, IEEE Transactions on Rehabilitation Engineering, Vol. 8, no. 2, pp. 214–215.

    Google Scholar 

  • Polat, K. and Gunes, S. (2007) ‘Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform’, Applied Mathematics and Computation, 187 1017–1026.

    Google Scholar 

  • Pfurtscheller, G., Neuper, C., Schlogl, A. and Lugger, K. (1998) ‘Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters’, IEEE Transactions on Rehabilitation Engineering, Vol. 6, no. 3, pp. 316–325.

    Google Scholar 

  • Pfurtscheller, G., Flotzinger, D. and Kalcher, J. (1993) ‘Brain-computer interface-a new communication device for handicapped persons’, Journal of Microcomputer Application, Vol. 16, pp. 293–299.

    Google Scholar 

  • Proakis, J. G., & Manolakis, D. G. (1996) Digital Signal Processing Principles, Algorithms, and Applications, New Jersey: Prentice Hall.

    Google Scholar 

  • Qin L and He B (2005) ‘A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications’ Journal of Neural Engineering, Vol. 2, pp. 65–72.

    Google Scholar 

  • Qin, L. Ding, L. and He., B. (2004) ‘Motor imagery classification by means of source analysis for brain computer interface applications’, Journal of Neural Engineering, Vol. 1, no. 3, pp. 135–141.

    Google Scholar 

  • Ripley, B.D. (1996) Pattern recognition and neural networks. Cambridge, Cambridge University Press.

    Google Scholar 

  • Ripley data-online, http://www.stats.ox.ac.uk/pub/PRNN/.

  • Ryali, S., Supekar, K., Abrams, D. A. and Menon, V. (2010) ‘Sparse logistic regression for whole-brain classification of fMRI data’, NeuroImage, Vol. 51, pp. 752–764.

    Google Scholar 

  • Saggiol, G., Cavallo, P., Ferretti, A., Garzoli, F., Quitadamo, L. R., Marciani, M. G., Giannini, F. and Bianchi, L. (2009) ‘Comparison of Two Different Classifiers for Mental Tasks-Based Brain-Computer Interface: MLP Neural Networks vs. Fuzzy Logic’, Proceedings of the IEEE WoWMoM, pp. 1–5.

    Google Scholar 

  • Sanei, S. and Chambers, J. (2007) EEG signal processing, John Wiley & Sons, Ltd.

    Google Scholar 

  • Sample size calculator-online, http://www.surveysystem.com/sscalc.htm.

  • Satti, A. R., Coyle, D., Prasad, G. (2009) ‘Spatio-Spectral & Temporal Parameter Searching using Class Correlation Analysis and Particle Swarm Optimisation for Brain Computer Interface’, Proceedings of the IEEE on Systems, Man, and CybernetiCS, pp 1731–1735.

    Google Scholar 

  • Schlogl A, Neuper C and Pfurtscheller G (2002) ‘Estimating the mutual information of an EEG-based brain-computer interface’ Biomed. Tech. (Berl) Vol. 47, pp. 3–8.

    Google Scholar 

  • Shen C. P., Chen C. C.,  Hsieh S. L., Chen W. H., Chen J. M., Chen C. M., Lai F.  and Chiu M. J.  (2013) ‘High-performance seizure detection system using a wavelet-approximate entropy-fSVM cascade with clinical validation’, Clinical EEG and Neuroscience, DOI: 10.1177/1550059413483451.

    Google Scholar 

  • Silver, A.E., Lungren, M.P., Johnson, M.E., O’Driscoll, S.W.,An, K.N and Hughes, R.E. (2006) ‘Using support vector machines to optimally classify rotator cuff strength data and quantify post-operative strength in rotator cuff tear patients’, Journal of Biomechanics, Vol. 39, pp. 973–979.

    Google Scholar 

  • Siuly, Li, Y. and Wen, P. (2009) ‘Classification of EEG signals using Sampling Techniques and Least Square Support Vector Machines’, RSKT 2009, LNCS 5589, pp. 375–382.

    Google Scholar 

  • Siuly, Li, Y. and Wen, P. (2010) ‘Analysis and classification of EEG signals using a hybrid clustering technique’, Proceedings of the 2010 IEEE/ICME International Conference on Complex Medical Engineering (CME2010), pp. 34–39.

    Google Scholar 

  • Siuly, Li, Y. and Wen, P. (2011a) ‘Clustering technique-based least square support vector machine for EEG signal classification’, Computer Methods and Programs in Biomedicine, Vol. 104, Issue 3, pp. 358–372.

    Google Scholar 

  • Siuly, Li, Y. and Wen, P. (2011b) ‘EEG signal classification based on simple random sampling technique with least square support vector machines’, International journal of Biomedical Engineering and Technology, Vol. 7, no. 4, pp. 390–409.

    Google Scholar 

  • Siuly and Y. Li, (2012) ‘Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain computer interface’, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 20, no. 4, pp. 526–538.

    Google Scholar 

  • Siuly, and Li, Y. (2014) ‘A novel statistical algorithm for multiclass EEG signal classification’, Engineering Applications of Artificial Intelligence, Vol. 34, pp. 154–167.

    Google Scholar 

  • Siuly and Y. Li, (2015), ‘Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification’, Computer Methods and programs in Biomedicine, Computer Methods and programs in Biomedicine, Vol. 119, pp. 29–42.

    Google Scholar 

  • Siuly, S., Kabir, E., Wang, H. and Zhang, Y. (2015) ‘Exploring Sampling in the Detection of Multicategory EEG Signals’, Computational and Mathematical Methods in Medicine, 2015, pp. 1–12.

    Google Scholar 

  • Siuly, S. and Zhang, Y. (2016) ‘Medical Big Data: Neurological Diseases Diagnosis Through Medical Data Analysis’, Data Science and Engineering, DOI:10.1007/s41019-016-0011-3, pp. 1–11.

    Google Scholar 

  • Siuly, Wang, H. and Zhang, Y. (2016) ‘Detection of motor imagery EEG signals employing Naïve Bayes based learning process’, Measurement, 86, pp. 148–158.

    Google Scholar 

  • Siuly, N., Li, Y. and Wen, P. (2013) ‘Identification of motor imagery tasks through CC-LR algorithm in brain computer interface’, International Journal of Bioinformatics Research and Applications, 9(2), p. 156.

    Google Scholar 

  • Siuly, S. and Li, Y. (2014a) ‘Discriminating the brain activities for brain–computer interface applications through the optimal allocation-based approach’, Neural Comput & Applic, 26(4), pp. 799–811.

    Google Scholar 

  • Siuly, Li, Y. and (Paul) Wen, P. (2014) ‘Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain–computer interface. Computer Methods and Programs in Biomedicine’, 113(3), pp. 767–780.

    Google Scholar 

  • Song L, Epps J, (2007) ‘Classifying EEG for brain-computer interface: learning optimal filters for dynamical features’, Comput Intell and Neurosci, Article ID 57180, 11 pages, doi:10.1155/2007/57180, 2007.

    Google Scholar 

  • Stoica, P., & Moses, R. (1997) Introduction to Spectral Analysis, New Jersey: Prentice Hall.

    Google Scholar 

  • Subasi, A. and Ercelebi, E. (2005a) ‘Classification of EEG signals using neural network and logistic regression’, Computer Methods and Programs in Biomedicine, Vol. 78, pp. 87–99.

    Google Scholar 

  • Subasi, A., Alkan, A., Kolukaya, E. and Kiymik, M. K. (2005b) ‘Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing’, Neural Networks, Vol. 18, pp. 985–997.

    Google Scholar 

  • Subasi, A. (2007) ‘EEG signal classification using wavelet feature extraction and a mixture of expert model’, Expert System with Applications, Vol. 32, pp. 1084–1093.

    Google Scholar 

  • Supriya, S., Siuly, S. and Zhang, Y. (2016) ‘Automatic epilepsy detection from EEG introducing a new edge weight method in the complex network’, Electronics Letters. DOI:10.1049/el.2016.1992 (in press).

  • Suk, H. and Lee, S.W. (2013) ‘A Novel Bayesian framework for Discriminative Feature Extraction in Brain-Computer Interfaces’, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, no. 2, 286–299.

    Google Scholar 

  • Ting W, Guo-Zheng Y, Bang-Hua Y and Hong S (2008) ‘EEG feature extraction based on wavelet packet decomposition for brain computer interface’ Measurement, Vol. 41, pp. 618–625.

    Google Scholar 

  • Ubeyli, E.D. (2010) ‘Least Square Support Vector Machine Employing Model-Based Methods coefficients for Analysis of EEG Signals’, Expert System with Applications. 37 233–239.

    Google Scholar 

  • Ubeyli, E. D. (2009a) ‘Decision support systems for time-varying biomedical signals: EEG signals classification’, Expert Systems with Applications, Vol. 36, pp. 2275–2284.

    Google Scholar 

  • Ubeyli, E. D. (2009b) ‘Statistics over features: EEG signals analysis’, Computers in Biology and Medicine, Vol. 39, pp. 733–741.

    Google Scholar 

  • Ubeyli, E.D. (2008) ‘Wavelet/mixture of experts network structure for EEG signals classification’ Expert System with Applications Vol. 34, pp. 1954–1962.

    Google Scholar 

  • Ubeyli, E. D., & Guler, I. (2004) ‘Spectral broadening of ophthalmic arterial Doppler signals using STFT and wavelet transform. Computers in Biology and Medicine, Vol. 34, no. 4, pp. 345–354.

    Google Scholar 

  • Ubeyli, E. D., & Guler, I. (2003) ‘Comparison of eigenvector methods with classical and model-based methods in analysis of internal carotid arterial Doppler signals’, Computers in Biology and Medicine, Vol. 33, no. 6, pp. 473–493.

    Google Scholar 

  • Wang, S. & James, C. J., (2007) ‘Extracting rhythmic brain activity for brain-computer interfacing through constrained independent component analysis’, Computational Intelligence and Neuroscience, Article ID 41468, 9 pages, doi:10.1155/2007/41468.

    Google Scholar 

  • Welch, P. D. (1967) ‘The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms’, IEEE Transactions on Audio and Electroacoustics, AU-15, 70–73.

    Google Scholar 

  • Wu, W., Gao, X., Hong, B. and Gao, S. (2008) ‘Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL)’, IEEE Transactions on Biomedical Engineering, Vol. 55, no. 6, pp. 1733–1743.

    Google Scholar 

  • Yamaguchi, T., Nagata, K., Truong, P. Q., Fujio, M. and Inoue, K. (2008) ‘Pattern Recognition of EEG Signal During Motor Imagery by Using SOM’, International Journal of Innovative Computing, Information and Control, Vol.4, no.IO, pp. 2617–2630.

    Google Scholar 

  • Yong, X, Ward, R.K. and Birch, G.E. (2008) ‘Sparse spatial filter optimization for EEG channel reduction in brain-computer interface’, ICASSP 2008, pp. 417–420.

    Google Scholar 

  • Zhang, R., Xu, P., Guo, L., Zhang, Y., Li, P. and Yao, D. (2013) ‘Z-Score Linear Discriminant Analysis for EEG Based Brain-Computer Interfaces’, PLoS ONE, Vol. 8, no. 9, e74433.

    Google Scholar 

  • Zhu, G., Li, Y., Wen, P. (2014) ‘Epileptic seizure detection in EEGs signals using a fast weighted horizontal visibility algorithm’, Computer Methods and Programs in Biomedicine, Vol. 115, pp. 64–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siuly Siuly .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Siuly, S., Li, Y., Zhang, Y. (2016). Objectives and Structures of the Book. In: EEG Signal Analysis and Classification. Health Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-47653-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47653-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47652-0

  • Online ISBN: 978-3-319-47653-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics