Abstract
Electroencephalograms (EEGs) have become increasingly important measurements of brain activities for the diagnosis and treatment of mental and brain diseases and abnormalities. EEG recordings provide information about electrical activity of the brain. EEG signals’ parameters and patterns indicate the health states of the brain. The study of the brain electrical activity, through the EEG records, is one of the most important tools for the diagnoses of neurological diseases, such as epilepsy, brain tumour, head injury, sleep disorder, dementia and monitoring depth of anaesthesia during surgery etc. It may also be recommended for the treatment of abnormalities, behavioural disturbances (e.g. Autism), attention disorders, learning problems, language delay etc. This chapter provides an overview about fundamental knowledge of Electroencephalogram (EEG) signals including its generation mechanism, characteristics and natures. At last, this chapter discusses on the abnormal EEG patterns for different neurological disease and disorders with some illustrations.
Keywords
- Epileptic Seizure
- Slow Activity
- Subdural Empyema
- Subacute Sclerosing Panencephalitis
- Subdural Electrode
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options



















References
10/20 positioning/DIY tDCS; http://www.diytdcs.com/tag/1020-positioning/.
Abou-Khalil B, Missulis KE. Abnormal EEG: non-epileptiform abnormalities. In: Abou-Khalil B, Misulis KE (Eds). Atlas of EEG and seizure semiology. Philadelphia: Elsevier, 2006:99–123.
Adeli, H., Zhou, Z. and Dadmehr, N. (2003) ‘Analysis of EEG Records in an Epileptic Patient Using Wavelet Transform’, J. Neurosci. Methods, Vol. 123, no. 1, pp. 69–87.
Andraus M. E. C., Alves-Leon S. V., Non-epileptiform EEG abnormalities, Arq Neuropsiquiatr 2011; 69(5):829–835.
Atwood, H. L. and MacKay, W. A. (1989) Essentials of neurophysiology, Toronto, Philadelphia: B. C. Decker.
Birbaumer, N., Weber, C., Neuper, C., Buch, E., Haagen, K., and Cohen, K., ‘Brain–computer interface research: coming of age’, Clin. Neurophysiol., 117, 2006, 479–483.
Brain & Nervous System Health Center, WebMD, http://www.webmd.com/brain/picture-of-the-brain.
Brainwave Entrainment, Itsu sync, http://itsusync.com/different-types-of-brain-waves-delta-theta-alpha-beta-gamma.
Carlson, N. R. (2002a) Foundations of physiological psychology, 5th ed., Boston, Mass. London: Allyn and Bacon.
Carlson, N. R. (2002b) ‘Structure and Functions of the Nervous System’, Foundations of physiological psychology, Vol. 5th ed. Issue 3. Boston, Mass. London: Allyn and Bacon.
Campisi, P. “EEG for Automatic Person Recognition”, Computer, vol. 45, no. 7, pp. 87–89, July 2012, doi:10.1109/MC.2012.233.
Chatrian et al. (1974) A glossary of terms most commonly used by clinical electroencephalographers. Electroencephalogr Clin Neurophysiol. 1974 Nov. 37(5):538–48.
Collura, T. F. (1993) ‘History and evolution of electroencephalographic instruments and techniques’, Clinical Neurophysiology, Vol. 10, Iss. 4, pp. 476–504.
EEG in Dementia and Encephalopathy, Medscape, 2015; http://emedicine.medscape.com/article/1138235-overview#showall.
EEG Recording, medical electronics III, http://medical-electronics-iii.blogspot.com.au/2007_10_01_archive.html.
EEG, Saint Luke’s Health System; http://www.saintlukeshealthsystem.org/health-library/electroencephalogram-eeg.
Encephalopathic EEG Patterns, Medscape, 2015. http://emedicine.medscape.com/article/1140530-overview#a2 Alejandro L. Escalaya and Jorge G. Burneo, Surgical Treatment of Neurocysticercosis-Related Epilepsy, Epilepsy Program, Western University, London, Ontario, Canada, DOI:10.5772/54275.
Epilepsy and its Treatment for Providers, Angelman, http://www.angelman.org/what-is-as/medical-information/epilepsy-and-its-treatment-for-providers/.
Fisch B J (1999) EEG premier: Basic principles of digital and analog EEG (third edition), Elsevier publication.
Freeman WJ. (2004a) Origin, structure, and role of background EEG activity. Part 1. Analytic amplitude. Clinical Neurophysiology. 115(9):2077–88.
Freeman WJ. (2004b) Origin, structure, and role of background EEG activity. Part 2. Analytic phase. Clinical Neurophysiology. 115(9):2089–107.
Gray, F. J. (2002) Anatomy for the medical clinician, first edition, Shannon Books Pty Ltd., Victoria, Australia.
Hazarika, N., Chen, J.Z., Tsoi, A.C., and Sergejew, A. (1997) ‘Classification of EEG Signals Using the Wavelet Transform’, Signal Process, Vol. 59 (1), pp. 61–72.
Jasper, H. H. (1958) ‘The ten-twenty electrode system of the International Federation’, Electroencephalogram. Clinical. Neurophysiology. Vol. 10, pp: 367–380.
Lee, J.E., and Khoshbin, S. (2015) Clinical Neurophysiology and Electroencephalography, http://clinicalgate.com/75-clinical-neurophysiology-and-electroencephalography/.
Mani, J. (2014), Video electroencephalogram telemetry in temporal lobe epilepsy, Annals of Indian academy of Neurology, Volume: 17(5) pp. 45–49.
Moving Autism Forward, 2015; https://tacanowblog.com/2015/04/17/15-years-later-ready-for-autism-answers/.
Neuroscience, http://www.appsychology.com/Book/Biological/neuroscience.htm.
Niedermeyer E. and Lopes da Silva F. (2005) Electroencephalography: basic principles, clinical applications, and related fields, Lippincott Williams & Wilkins, ISBN 0781751268, 5th edition, 2005.
Noachtar S., Binnie C., Ebersole J., MauguieÁre F., Sakamoto A. and Westmoreland B., A glossary of terms most commonly used by clinical electroencephalographers, Electroencephalogr Clin Neurophysiol, 1974 Nov. 37(5):538–48.
Normal Awake EEG, Medscape, 2015; http://emedicine.medscape.com/article/1140143-overview.
Purves, D., Augustine, G.J., Fitzpatrick, D., Katz, L.C. Lamantia, A.S. and McNamara, J.O. (2004) Neuroscience, Sinauer associates, third edition, Inc. Publishers, Sunderland, Massachusetts, USA.
Sanei, S. and Chambers, J. A. (2007) EEG Signal Processing, John Wiley & Sons, Ltd., 2007.
Schaul N. The fundamental neural mechanisms of electroencephalography. Electroencephalogr Clin Neurophysiol 1998;106:101–107.
Schaul N, Gloor P, Gotman J. The EEG in deep midline lesions. Neurology 1981; 31:157–167.
Schröder, M. I., Lal, T. N., Hinterberger, T., Bogdan, M., Hill, N. J., Birbaumer, N., Rosenstiel, W., and Schölkopf, B., ‘Robust EEG channel selection across subjects for brain–computer interfaces’, EURASIP J. Appl. Signal Proces., 19, 2005, 3103–3112.
Tedrus GM, Fonseca LC, Nogueira Junior E, Pazetto D. Epilepsy with onset at over 50 years of age: clinical and electroencephalographic characteristics. Arq Neuropsiquiatr. 2012 Oct. 70(10):780–5.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Siuly, S., Li, Y., Zhang, Y. (2016). Electroencephalogram (EEG) and Its Background. In: EEG Signal Analysis and Classification. Health Information Science. Springer, Cham. https://doi.org/10.1007/978-3-319-47653-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-47653-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47652-0
Online ISBN: 978-3-319-47653-7
eBook Packages: Computer ScienceComputer Science (R0)