Skip to main content

Fundamentals

  • Chapter
  • First Online:
Cellular Image Classification
  • 680 Accesses

Abstract

In this chapter, we firstly introduce the application of optical technology in cellular imaging. Then, we will introduce the fundamentals about analysis and classification of HEp-2 cell images. Our works focus on the efficient feature extraction for staining pattern classification of HEp-2 cells. There are countless features existed for image classification. Firstly we refer some widely used features for describing staining patterns, then we will introduce some fundamental classifiers for staining patterns classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desmond Adler, Tony Ko, Paul Herz, and James Fujimoto. Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation. Optics express, 12(22):5487–5501, 2004.

    Article  Google Scholar 

  2. Danni Ai, Xianhua Han, Xiang Ruan, and Yen-Wei Chen. Adaptive color independent components based sift descriptors for image classification. In Proceedings of the 2010 20th International Conference on Pattern Recognition, pages 2436–2439. IEEE Computer Society, 2010.

    Google Scholar 

  3. Maria E Åkerman, Warren CW Chan, Pirjo Laakkonen, Sangeeta N Bhatia, and Erkki Ruoslahti. Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences, 99(20):12617–12621, 2002.

    Google Scholar 

  4. A Paul Alivisatos, Weiwei Gu, and Carolyn Larabell. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng., 7:55–76, 2005.

    Google Scholar 

  5. Roohollah Bagherzadeh, Masoud Latifi, Saeed Shaikhzadeh Najar, and Lingxue Kong. The application of cd se/zns quantum dots and confocal laser scanning microscopy for three-dimensional imaging of nanofibrous structures. Journal of industrial textiles, 43(4):496–510, 2014.

    Google Scholar 

  6. Byron Ballou, B Christoffer Lagerholm, Lauren A Ernst, Marcel P Bruchez, and Alan S Waggoner. Noninvasive imaging of quantum dots in mice. Bioconjugate chemistry, 15(1):79–86, 2004.

    Google Scholar 

  7. Marcel Bruchez, Mario Moronne, Peter Gin, Shimon Weiss, and A Paul Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. science, 281(5385):2013–2016, 1998.

    Google Scholar 

  8. Victoria E Centonze. Introduction to multiphoton excitation imaging for the biological sciences. Cell Biological Applications of Confocal Microscopy, page 129, 2002.

    Google Scholar 

  9. Warren CW Chan and Shuming Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281(5385):2016–2018, 1998.

    Article  Google Scholar 

  10. Leonardo Chang, Miriam M Duarte, Luis Enrique Sucar, and Eduardo F Morales. A Bayesian approach for object classification based on clusters of sift local features. Expert Systems With Applications, 39(2):1679–1686, 2012.

    Google Scholar 

  11. Jui-Tai Chen, Ruei-Ming Chen, Yi-Ling Lin, Huai-Chia Chang, Yu-Hua Lin, Ta-Liang Chen, and Tyng-Guey Chen. Confocal laser scanning microscopy: 1. an overview of principle and practice in biomedical research. ACTA ANAESTHESIOLOGICA SINICA, 42:33–40, 2004.

    Google Scholar 

  12. Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification. Information Theory, IEEE Transactions on, 13(1):21–27, 1967.

    Google Scholar 

  13. Maxime Dahan, Sabine Levi, Camilla Luccardini, Philippe Rostaing, Beatrice Riveau, and Antoine Triller. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 302(5644):442–445, 2003.

    Article  Google Scholar 

  14. Frank De Lange, Alessandra Cambi, Richard Huijbens, Bärbel de Bakker, Wouter Rensen, Maria Garcia-Parajo, Niek van Hulst, and Carl G Figdor. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. Journal of cell science, 114(23):4153–4160, 2001.

    Google Scholar 

  15. Winfried Denk. Principles of multiphoton-excitation fluorescence microscopy. Cold Spring Harbor Protocols, 2007(10):pdb–top23, 2007.

    Google Scholar 

  16. Sulatha Dwarakanath, John G Bruno, Anant Shastry, Taylor Phillips, Ashely John, Ashok Kumar, and Larry D Stephenson. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochemical and biophysical research communications, 325(3):739–743, 2004.

    Google Scholar 

  17. Michael Edidin. Near-field scanning optical microscopy, a siren call to biology. Traffic, 2(11):797–803, 2001.

    Article  Google Scholar 

  18. Justin Farlow, Daeha Seo, Kyle E Broaders, Marcus J Taylor, Zev J Gartner, and Young-wook Jun. Formation of targeted monovalent quantum dots by steric exclusion. Nature methods, 10(12):1203–1205, 2013.

    Google Scholar 

  19. MD Fricker and AJ Meyer. Confocal imaging of metabolism in vivo: pitfalls and possibilities. Journal of experimental botany, 52(356):631–640, 2001.

    Article  Google Scholar 

  20. JM Girkin. Optical physics enables advances in multiphoton imaging. Journal of Physics D: Applied Physics, 36(14):R250, 2003.

    Article  Google Scholar 

  21. Ralph Gräf, Jens Rietdorf, and Timo Zimmermann. Live cell spinning disk microscopy. In Microscopy Techniques, pages 57–75. Springer, 2005.

    Google Scholar 

  22. Weiwei Gu, Teresa Pellegrino, Wolfgang J Parak, Rosanne Boudreau, Mark A Le Gros, Daniele Gerion, A Paul Alivisatos, and Carolyn A Larabell. Quantum dot-based cell motility assay. Science Signaling, 2005(290):pl5–pl5, 2005.

    Google Scholar 

  23. Karl-Jürgen Halbhuber and Karsten König. Modern laser scanning microscopy in biology, biotechnology and medicine. Annals of Anatomy-Anatomischer Anzeiger, 185(1):1–20, 2003.

    Article  Google Scholar 

  24. Alan R Hibbs. Confocal microscopy for biologists. Springer Science & Business Media, 2004.

    Google Scholar 

  25. Barbara M Hoeling, Andrew D Fernandez, Richard C Haskell, Eric Huang, Whittier R Myers, Daniel C Petersen, Sharon E Ungersma, Ruye Wang, Mary E Williams, and Scott E Fraser. An optical coherence microscope for 3-dimensional imaging in developmental biology. Optics Express, 6(7):136–146, 2000.

    Google Scholar 

  26. Benoît Host, Laure Twyffels, Yves Roisin, and J-M Vanderwinden. Three-dimensional visualization of termite (apicotermitinae) enteric valve using confocal laser scanning microscopy. Journal of microscopy, 255(2):116–122, 2014.

    Google Scholar 

  27. Mark Howarth, Wenhao Liu, Sujiet Puthenveetil, Yi Zheng, Lisa F Marshall, Michael M Schmidt, K Dane Wittrup, Moungi G Bawendi, and Alice Y Ting. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nature methods, 5(5):397–399, 2008.

    Google Scholar 

  28. Anatoli Ianoul, Melissa Street, Donna Grant, John Pezacki, Rod S Taylor, and Linda J Johnston. Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes. Biophysical journal, 87(5):3525–3535, 2004.

    Google Scholar 

  29. Marjolein Koopman, Alessandra Cambi, Bärbel I de Bakker, Ben Joosten, Carl G Figdor, Niek F van Hulst, and Maria F Garcia-Parajo. Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells. FEBS letters, 573(1-3):6–10, 2004.

    Google Scholar 

  30. Blandine Laude, Antonello De Martino, Bernard Drevillon, Laurence Benattar, and Laurent Schwartz. Full-field optical coherence tomography with thermal light. Applied optics, 41(31):6637–6645, 2002.

    Article  Google Scholar 

  31. Tony Lindeberg. Scale-space theory: A basic tool for analyzing structures at different scales. Journal of applied statistics, 21(1-2):225–270, 1994.

    Article  Google Scholar 

  32. D.G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2):91–110, 2004.

    Article  Google Scholar 

  33. John N Mason, Ian D Tomlinson, Sandra J Rosenthal, and Randy D Blakely. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates. Methods Mol Biol, 303(1):35–50, 2005.

    Google Scholar 

  34. Sean G Megason and Scott E Fraser. Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mechanisms of development, 120(11):1407–1420, 2003.

    Google Scholar 

  35. Xavier Michalet, Fabien Pinaud, Thilo D Lacoste, Maxime Dahan, Marcel P Bruchez, A Paul Alivisatos, and Shimon Weiss. Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Molecules, 2(4):261–276, 2001.

    Google Scholar 

  36. Peter Mitchell. Turning the spotlight on cellular imaging. Nature biotechnology, 19(11):1013–1018, 2001.

    Article  Google Scholar 

  37. Toshiyuki Miyashita. Confocal microscopy for intracellular co-localization of proteins. Protein-Protein Interactions: Methods and Applications, pages 399–409, 2004.

    Google Scholar 

  38. Christof M Niemeyer. Functional hybrid devices of proteins and inorganic nanoparticles. Angewandte Chemie International Edition, 42(47):5796–5800, 2003.

    Google Scholar 

  39. Timo Ojala, Matti Pietikäinen, and David Harwood. A comparative study of texture measures with classification based on featured distributions. Pattern recognition, 29(1):51–59, 1996.

    Article  Google Scholar 

  40. Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7):971–987, 2002.

    Article  MATH  Google Scholar 

  41. Aydogan Ozcan, Ertugrul Cubukcu, Alberto Bilenca, Kenneth B Crozier, Brett E Bouma, Federico Capasso, and Guillermo J Tearney. Differential near-field scanning optical microscopy. Nano letters, 6(11):2609–2616, 2006.

    Google Scholar 

  42. Stephen W Paddock. Principles and practices of laser scanning confocal microscopy. Molecular biotechnology, 16(2):127–149, 2000.

    Google Scholar 

  43. Jeremy S Paige, Thinh Nguyen-Duc, Wenjiao Song, and Samie R Jaffrey. Fluorescence imaging of cellular metabolites with rna. Science, 335(6073):1194–1194, 2012.

    Google Scholar 

  44. Matti Pietikäinen, Abdenour Hadid, Guoying Zhao, and Timo Ahonen. Local binary patterns for still images. In Computer Vision Using Local Binary Patterns, pages 13–47. Springer, 2011.

    Google Scholar 

  45. David W Piston. Imaging living cells and tissues by two-photon excitation microscopy. Trends in cell biology, 9(2):66–69, 1999.

    Google Scholar 

  46. K Reynaud, D Nogueira, R Cortvrindt, R Kurzawa, and J Smitz. Confocal microscopy: principles and applications to the field of reproductive biology. Folia histochemica et cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society, 39(2):75–85, 2000.

    Google Scholar 

  47. Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification. Mach. Learn. Res., 5:101–141, 2004.

    MathSciNet  MATH  Google Scholar 

  48. Andrew Rollins, Siavash Yazdanfar, Manish Kulkarni, Rujchai Ung-Arunyawee, and Joseph Izatt. In vivo video rate optical coherence tomography. Optics Express, 3(6):219–229, 1998.

    Article  Google Scholar 

  49. Sandra J Rosenthal. Bar-coding biomolecules with fluorescent nanocrystals. Nature biotechnology, 19(7):621–622, 2001.

    Google Scholar 

  50. Eleonora Ruocco, Giuseppe Argenziano, Giovanni Pellacani, and Stefania Seidenari. Noninvasive imaging of skin tumors. Dermatologic surgery, 30(s2):301–310, 2004.

    Article  Google Scholar 

  51. Paul Selvin. New small quantum dots for neuroscience (presentation video). In SPIE BiOS, pages 89282X–89282X. International Society for Optics and Photonics, 2014.

    Google Scholar 

  52. Caroline Seydel. Quantum dots get wet. Science, 300(5616):80, 2003.

    Article  Google Scholar 

  53. Andrei P Sommer and Ralf-Peter Franke. Near-field optical analysis of living cells in vitro. Journal of proteome research, 1(2):111–114, 2002.

    Google Scholar 

  54. AP Sommer and R-P Franke. Hydrophobic optical elements for near-field optical analysis (noa) in liquid environment—a preliminary study. Micron, 33(3):227–231, 2002.

    Google Scholar 

  55. Martin Straub and Stefan W Hell. Multifocal multiphoton microscopy: a fast and efficient tool for 3-d fluorescence imaging. Bioimaging, 6(4):177–185, 1998.

    Google Scholar 

  56. Mitsuro Sugita, Michael Pircher, Stefan Zotter, Bernhard Baumann, Kenichi Saito, Tomoyuki Makihira, Nobuhiro Tomatsu, Makoto Sato, and Christoph K Hitzenberger. Analysis of optimum conditions of depolarization imaging by polarization-sensitive optical coherence tomography in the human retina. Journal of biomedical optics, 20(1):016011–016011, 2015.

    Google Scholar 

  57. DJ Taatjes, CJ Palmer, C Pantano, S Buder-Hoffmann, A Cummins, and BT Mossman. Laser-based microscopic approaches: application to cell signaling in environmental lung disease. Biotechniques, 31(4):880–895, 2001.

    Google Scholar 

  58. Wee Beng Tan and Yong Zhang. Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. Journal of biomedical materials research Part A, 75(1):56–62, 2005.

    Google Scholar 

  59. Fuyuki Tokumasu, Rick M Fairhurst, Graciela R Ostera, Nathaniel J Brittain, Jeeseong Hwang, Thomas E Wellems, and James A Dvorak. Band 3 modifications in plasmodium falciparum-infected aa and cc erythrocytes assayed by autocorrelation analysis using quantum dots. Journal of cell science, 118(5):1091–1098, 2005.

    Google Scholar 

  60. Pavel Vesely and Alan Boyde. Fast intracellular motion in the living cell by video rate reflection confocal laser scanning microscopy. Journal of anatomy, 198(6):641–649, 2001.

    Article  Google Scholar 

  61. Tie Xia, Nan Li, and Xiaohong Fang. Single-molecule fluorescence imaging in living cells. Annual review of physical chemistry, 64:459–480, 2013.

    Article  Google Scholar 

  62. Xiang Xu, Feng Lin, Carol Ng, and Khai Pang Leong. Staining pattern classification of ana-iif based on sift features. Journal of Medical Imaging and Health Informatics, 2(4):419–424, 2012.

    Article  Google Scholar 

  63. Dvir Yelin and Yaron Silberberg. Laser scanning third-harmonic-generation microscopy in biology. Optics express, 5(8):169–175, 1999.

    Article  Google Scholar 

  64. Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object tracking using sift features and mean shift. Computer vision and image understanding, 113(3):345–352, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Xu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Xu, X., Wu, X., Lin, F. (2017). Fundamentals. In: Cellular Image Classification. Springer, Cham. https://doi.org/10.1007/978-3-319-47629-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47629-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47628-5

  • Online ISBN: 978-3-319-47629-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics