Skip to main content

Limiting Kalman Filter

  • Chapter
  • First Online:
Kalman Filtering
  • 4758 Accesses

Abstract

In this chapter, we consider the special case where all known constant matrices are independent of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles K. Chui .

Exercises

Exercises

  1. 6.1.

    Prove that the estimate \(\tilde{\mathbf {x}}_{k-1}\) in (6.7) is an unbiased estimate of \(\mathbf {x}_{k-1}\) in the sense that \(E(\tilde{\mathbf {x}}_{k-1})=E(\mathbf {x}_{k-1})\).

  2. 6.2.

    Verify that

    $$\begin{aligned} \frac{d}{ds}A^{-1}(s)=-A^{-1}(s)\left[ \frac{d}{ds}A(s)\right] A^{-1}(s) . \end{aligned}$$
  3. 6.3.

    Show that if \(\lambda _{min}\) is the smallest eigenvalue of P, then \( P\ge \lambda _{min}I\). Similarly, if \(\lambda _{max}\) is the largest eigenvalue of P then \(P\le \lambda _{max}I\).

  4. 6.4.

    Let F be an \(n\times n\) matrix. Suppose that all the eigenvalues of F are of absolute value less than 1. Show that \(F^{k}\rightarrow 0\) as \( k\rightarrow \infty \).

  5. 6.5.

    Prove that for any \(n\times n\) matrices A and B,

    $$\begin{aligned} (A+B)(A+B)^{\top }\le 2(AA^{\top }+BB^{\top })\ . \end{aligned}$$
  6. 6.6.

    Let \(\{\underline{\xi }_{k}\}\) and \(\{\underline{\eta }_{k}\}\) be sequences of zero-mean Gaussian white system and measurement noise processes, respectively, and \(\vec {\mathbf {x}}_{k}\) be defined by (6.4). Show that

    $$\begin{aligned} \langle \mathbf {x}_{k-1}-\vec {\mathbf {x}}_{k-1},\ \underline{\xi }_{k-1}\rangle =0 \end{aligned}$$

    and

    $$\begin{aligned} \langle \mathbf {x}_{k-1}-\vec {\mathbf {x}}_{k-1},\ \underline{\eta }_{k}\rangle =0. \end{aligned}$$
  7. 6.7.

    Verify that for the Kalman gain \(G_{k}\), we have

    $$\begin{aligned} -(I-G_{k}C)P_{k, k-}{}_{1}C^{\top }G_{k}^{\top }+G_{k}R_{k}G_{k}^{\top }=0. \end{aligned}$$

    Using this formula, show that

    $$\begin{aligned} P_{k, k}&=(I-G_{k}C)AP_{k-1, k-1}A^{\top }(I-G_{k}C)^{\top }\\&\quad +(I-G_{k}C){{\Gamma }} Q_{k}{{\Gamma }}^{\top }(I-G_{k}C)^{\top }+G_{k}RG_{k}^{\top }. \end{aligned}$$
  8. 6.8.

    By imitating the proof of Lemma 6.8, show that all the eigenvalues of \((I-GC)A\) are of absolute value less than 1.

  9. 6.9.

    Let \(\underline{\epsilon }_{k}=\hat{\mathbf {x}}_{k}-\vec {\mathbf {x}}_{k}\) where \(\vec {\mathbf {x}}_{k}\) is defined by (6.4), and let \(\underline{\delta }_{k}= \mathbf {x}_{k}-\hat{\mathbf {x}}_{k}\). Show that

    $$\begin{aligned}&\langle \underline{\epsilon }_{k-1}, \underline{\xi }_{k-1}\rangle =0,&\quad \langle \underline{\epsilon }_{k-1}, \underline{\eta }_{k}\rangle =0,\\&\langle \underline{\delta }_{k-1},\ \underline{\xi }_{k-1}\rangle =0,&\quad \langle \underline{\delta }_{k-1},\ \underline{\eta }_{k}\rangle =0, \end{aligned}$$

    where \(\{\underline{\xi }_{k}\}\) and \(\{\underline{\eta }_{k}\}\) are zero-mean Gaussian white system and measurement noise processes, respectively.

  10. 6.10.

    Let

    $$\begin{aligned} B_{j}=\langle \underline{\epsilon }_{j},\ \underline{\delta }_{j}\rangle A^{\top }C^{\top },\qquad j=0, 1,\ \cdots , \end{aligned}$$

    where \(\underline{\epsilon }_{j}=\hat{\mathbf {x}}_{j}-\vec {\mathbf {x}}_{j}\), \(\underline{\delta }_{j}=\mathbf {x}_{j}-\hat{\mathbf {x}}_{j}\), and \(\vec {\mathbf {x}}_{j}\) is defined by (6.4). Prove that \(B_{j}\) are componentwise uniformly bounded.

  11. 6.11.

    Derive formula (6.41).

  12. 6.12.

    Derive the limiting (or steady-state) Kalman filtering algorithm for the scalar system:

    $$\begin{aligned} \left\{ \begin{array}{rl} x_{k+1}&{}=ax_{k}+\gamma \xi _{k}\\ v_{k}&{}=cx_{k}+\eta _{k}, \end{array}\right. \end{aligned}$$

    where \(a,\ \gamma \), and c are constants and \(\{\xi _{k}\}\) and \(\{\eta _{k}\}\) are zero-mean Gaussian white noise sequences with variances q and r, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chui, C.K., Chen, G. (2017). Limiting Kalman Filter. In: Kalman Filtering. Springer, Cham. https://doi.org/10.1007/978-3-319-47612-4_6

Download citation

Publish with us

Policies and ethics